Kinetic energy of an object is the energy it contains due to movement. If an object is at rest, it doesn't have kinetic energy. If it's moving, then it has kinetic energy. It's pretty simple! The amount of kinetic energy of an object is dependent upon two variables, one being the mass of the object
Initial volume of mercury is
V = 0.1 cm³
The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.
Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³
The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
= (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
= 4.5 cm
Answer: 4.5 cm
Answer:
The science of thermodynamics deals with the fundamental laws that guide how physical processes occur in relation with the energy transfer. When a system or process changes from one state of equilibrium to another, thermodynamics is interested with the amount of heat transfer during the process. On the other hand, the science of heat transfer is simply about the rate of heat and temperature distribution inside a system at a particular point in time.
Explanation:
Answer:
After the colision, the stationary electron's momentum is given as:
P = 2.7328 x 10^(-25) kg m/s
The direction of momentum is the same as the direction of velocity of the electron.
Explanation:
In an Isolated system, when an object moving at some velocity v collides head on with a stationary object of equal mass. There velocities are exchanged.
This means that the first electron will become stationary and the electron which was stationary initially will start moving at a velocity of 3*10^(5)m/s in the same direction as the first electron.
Post collision momentum of the stationary electron:
V = 3 x 10^5 m/s
m = 9.1093 x 10^(-31) kg
Momentum = P = mV = 9.1093 x 10^(-31) x 3 x 10^5
P = 2.7328 x 10^(-25) kg m/s
The direction of momentum is the same as the velocity of the electron.
Answer: 6.12metres
Explanation:
The wavelength is the distance covered by the wave in one complete cycle. It is measured in metres, and represented by the symbol λ
Recall that Wavespeed (V) = Frequency F x wavelength λ
V = F λ
In this case,
Wavespeed of sound = 1530 m/s
Frequency of sound = 2.50 x 10^2 Hz
Wavelength = ? (let the unknown value be Z)
Apply V = F λ
1530 m/s = 2.50 x 10^2 Hz x Z
Z = (1530 m/s / 2.50 x 10^2 Hz)
Z = (1530 m/s / 250Hz)
Z = 6.12m
Thus, the wavelength of sound in sea water is 6.12m