1) We need to convert 12.0 g of H2 into moles of H2, and <span> 74.5 grams of CO into moles of CO
</span><span>Molar mass of H2: M(H2) = 2*1.0= 2.0 g/mol
Molar mass of CO: M(CO) = 12.0 +16.0 = 28.0 g/mol
</span>12.0 g H2 * 1 mol/2.0 g = 6.0 mol H2
74.5 g CO * 1 mol/28.0 g = 2.66 mol CO
<span>2) Now we can use reaction to find out what substance will react completely, and what will be leftover.
CO + 2H2 -------> CH3OH
1 mol 2 mol
given 2.66 mol 6 mol (excess)
How much
we need CO? 3 mol 6 mol
We see that H2 will be leftover, because for 6 moles H2 we need 3 moles CO, but we have only 2.66 mol CO.
So, CO will react completely, and we are going to use CO to find the mass of CH3OH.
3) </span>CO + 2H2 -------> CH3OH
1 mol 1 mol
2.66 mol 2.66 mol
4) We have 2.66 mol CH3OH
Molar mass CH3OH : M(CH3OH) = 12.0 + 4*1.0 + 16.0 = 32.0 g/mol
2.66 mol CH3OH * 32.0 g CH3OH/ 1 mol CH3OH = 85.12 g CH3OH
<span>
Answer is </span>D) 85.12 grams.
Explanation:
1. Elements are substances made of the same kind of atoms, unlike compounds that are combination for different kinds of atoms. The elements in the reaction therefore are;
Cl and O₃
2. Yes, the equation is balanced. There is the same number of each element on either side of the equation. One (1) CL and three (3) O atoms.
3. Ozone is reduced. Other the other hand, Cl is oxidized. Remember a reduction reaction may involve the loss of one or more oxygen atoms or the acceptance of electrons. This occurs for O₃ which is reduced to O₂.
4. The equation complies with the conservation of matter as in the first law of thermodynamics. The number of atoms for each element on the other side of the equation remains the same. This means no matter(which also translated to energy) has been created or destroyed in the process.
Au, N, O ( give me brainliest please)
well, without the article, I'm guessing the main idea is about the Great Wall of China