32.6 grams divided by the molar mass of C2H6, which is 18.0584g/mol = 1.8 moles of C2H6.
As there are two carbon atoms per C2H6, we must multiply the number of moles of C2H6 by 2 to get the number of moles of Carbon which is 3.6 moles.
The answer is 3.6 moles.
Hope this helps.
(Sorry for previously incorrect answer)
When two gases of a chemical reaction are at the same temperature, pressure and molar volume, then the stoichiometric ratio of the gases would be 1 is to 1. Molar volume is the volume of the gas per mole of the gas. Having the same conditions for both gases would mean that they are present with the same number of moles.
Answer:
ionic bonding occurs between ions and covalent bonding occurs when atoms have electrons in common (they share).
The number of atoms of gold in the pure ring are 7.18 × 10²² atoms.
<h3>HOW TO CALCULATE NUMBER OF ATOMS?</h3>
The number of atoms in a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
The number of moles in the gold (Au) can be calculated by dividing the mass of gold by its molar mass (196.97g/mol).
no. of moles = 23.5g ÷ 196.97g/mol
no. of moles = 0.119mol
Number of atoms in Au = 0.119 × 6.02 × 10²³
no. of atoms = 7.18 × 10²² atoms.
Therefore, the number of atoms of gold in the pure ring are 7.18 × 10²² atoms.
Learn more about number of atoms at: brainly.com/question/15959704