1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
10

A 8.0-m-diameter parachute of a new design is to be used to transport a load from flight altitude to the ground with an average

vertical speed of 3 m/s. The total weight of the load and parachute is 200 N. Determine the approximate drag coefficient for the parachute.
Engineering
1 answer:
S_A_V [24]3 years ago
3 0

Answer:

drag coefficient for the parachute is Cd = 1.84177

Explanation:

given data

diameter = 8.0 m

average vertical speed = 3 m/s

total weight of load = 200 N

to find out

drag coefficient for the parachute

solution

we will apply here drag coefficient formula that is express as here  

drag coefficient Cd = \frac{2w}{\rho v^2A}    ......................1

here w is total load and A is area and v is speed

and here ρ = 1.22 kg/cu

put here value we get  

Cd = \frac{2*4*200}{1.229*5^2*\pi * 3^2}  

Cd = 1.84177

drag coefficient for the parachute is Cd = 1.84177

You might be interested in
Which of the following is used in the electrical field?
weeeeeb [17]

Answer:

pliers

Explanation:

because that makes the most sense

6 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
4 years ago
A gas metal arc welder is also known as a _____ welder.<br> A) TIGB) GTAWC) GMAWD) Resistance spot
nignag [31]

Answer:

GMAW

Explanation:

It's literally the initials of that type of welding

7 0
3 years ago
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following
torisob [31]

Given:

Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.

To Find:

a. The distance from the leading edge at which the transition will occur.

b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer

c. Which fluid has a higher heat transfer

Calculation:

The transition from the lamina to turbulent begins when the critical Reynolds

number reaches 5\times 10^5

(a).  \;\text{Rex}_{cr}=5 \times 10^5\\\\\frac{\rho\;vx}{\mu}=5 \times 10^5\\\text{density of of air at}\;300K=1.16  \frac{kg}{m\cdot s}\\\text{viscosity of of air at}\;300K=1.846 \times 10^{-5} \frac{kg}{m\cdot s} \\v=3m/s\\\Rightarrow x=\frac{5\times 10^5 \times 1.846 \times 10^{-5} }{1.16 \times 3} =2.652 \;m \;\text{for air}\\(\text{similarly for engine oil at 380 K for given}\; \rho \;\text{and} \;\mu)\\

(b).\; \text{For the lamina boundary layer momentum boundary layer thickness is given by}:\\\frac{\delta}{x} =\frac{5}{\sqrt{R_e}}\;\;\;\;\quad\text{for}\; R_e(c). \frac{\delta}{\delta_t}={P_r}^{\frac{r}{3}}\\\text{For air} \;P_r \;\text{equivalent 1 hence both momentum and heat dissipate with the same rate for oil}\; \\P_r >>1 \text{heat diffuse very slowly}\\\text{So heat transfer rate will be high for air.}\\\text{Convective heat transfer coefficient will be high for engine oil.}

7 0
3 years ago
A boiler is used to heat steam at a brewery to be used in various applications such as heating water to brew the beer and saniti
Natalija [7]

Answer:

net boiler heat = 301.94 kW

Explanation:

given data

saturated steam = 6.0 bars

temperature = 18°C

flow rate = 115 m³/h = 0.03194 m³/s

heat use by boiler = 90 %

to find out

rate of heat does the boiler output

solution

we can say saturated steam is produce at 6 bar from liquid water 18°C

we know at 6 bar from steam table

hg = 2756 kJ/kg

and

enthalpy of water at 18°C

hf = 75.64 kJ/kg

so heat required for 1 kg is

=hg - hf

= 2680.36 kJ/kg

and

from steam table specific volume of saturated steam at 6 bar is 0.315 m³/kg

so here mass flow rate is

mass flow rate = \frac{0.03194}{0.315}

mass flow rate m = 0.10139 kg/s

so heat required is

H = h × m  

here h is heat required and m is mass flow rate

H = 2680.36  × 0.10139

H =  271.75 kJ/s = 271.75 kW

now 90 % of boiler heat is used for generate saturated stream

so net boiler heat = \frac{H}{0.90}

net boiler heat = \frac{271.75}{0.90}

net boiler heat = 301.94 kW

5 0
3 years ago
Other questions:
  • Which statement is true for the relay logic diagram shown below?
    9·1 answer
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • Talc and graphite are two of the lowest minerals on the hardness scale. They are also described by terms like greasy or soapy. B
    14·1 answer
  • Two parts are to be assembled in a way that if one part fails, the entire assembly fails. Each of the parts have undergone exten
    15·1 answer
  • What is a Planck Distribution and how is it used to solve for black body radiation problems?
    12·1 answer
  • 1)A wheel is used to turn a valve stem on a water valve. If the wheel radius is 1 foot and the stem, (axle), radius is .5 inches
    10·1 answer
  • (a) Sabbir usually (sit)______ in the front bench.
    13·1 answer
  • Why is communication one of the most important aspects of an engineer’s job?
    7·2 answers
  • Pls answer and I will give a like!
    8·1 answer
  • Engine vacuum is being discussed. Technician A says that when the engine is operating under light loads, engine vacuum is low. T
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!