Answer:
In an elastic collision, the total kinetic energy is conserved, while in an inelastic collision, it is not
Explanation:
Let's define the two types of collision:
- Elastic collision: an elastic collision is a collision in which:
1) the total momentum of the system is conserved
2) the total kinetic energy of the system is conserved
Typically, elastic collisions occur when there are no frictional forces acting on the objects in the system, so that no kinetic energy is lost into thermal energy. An example of elastic collision is the collision between biliard balls.
- Inelastic collision: an inelastic collision is a collision in which:
1 ) the total momentum of the system is conserved
2) the total kinetic energy of the system is NOT conserved
In an elastic collision, part of the total kinetic energy is lost (=converted into thermal energy) due to the presence of frictional forces. An example of inelastic collision is the accident between two cars, in which part of the energy is converted into heat.
Mechanical advantage allows you to apply a force over a short distance to increase the distance and object moves.
Answer:
u= 20.09 m/s
Explanation:
Given that
m = 0.02 kg
M= 2 kg
h= 0.2 m
Lets take initial speed of bullet = u m/s
The final speed of the system will be zero.
From energy conservation
1/2 m u²+ 0 = 0+ (m+M) g h
m u²=2 (m+M) g h
By putting the values
0.02 x u² = 2 (0.02+2) x 10 x 0.2 ( take g=10 m/s²)
u= 20.09 m/s
Answer:
Zero
Explanation:
Two long parallel wires each carry the same current I in the same direction. The magnetic field in wire 1 is given by :

Magnetic force acting in wire 2 due to 1 is given by :


Similarly, force acting in wire 1 is given by :
According to third law of motion, the force acting in wire 1 will be in opposite direction to wire 2 as :

So, the total magnetic field at the point P midway between the wires is in what direction will be zero as the the direction of forces are in opposite direction.