When the only force acting on a falling object is air resistance, the object is said to be In free fall. TRUE
By using the Plancks-Einstein equation, we can find the energy;
E = hf
where h is the plancks constant = 6.63 x 10⁻³⁴
f = frequency = 3.55 x 10¹⁷hz
E = (6.63 x 10⁻³⁴) x (3.55 x 10¹⁷)
E = 2.354 x 10⁻¹⁶J
Answer:
(a) 1.257 x 10^5 J
(b) 1.456 Watt
Explanation:
Volume of blood, v = 7500 L = 7.5 m^3
Height, h = 1.63 m
density of blood, d = 1.05 x 10^3 kg/m^3
(a) work done = m x g x h
W = v x d x g x h = 7.5 x 1.05 x 1000 x 9.8 x 1.63 = 1.257 x 10^5 J
(b) time = 1 day = 24 x 60 x 60 s = 86400 seconds
Power = Work / time = 1.257 x 10^5 / 86400 = 1.456 Watt
Answer:
Amplitude—distance between the resting position and the maximum displacement of the wave
Frequency—number of waves passing by a specific point per second
Period—time it takes for one wave cycle to complete
wavelength λ - the distance between adjacent identical parts of a wave, parallel to the direction of propagation.
Tension - described as the pulling force transmitted axially by the means of a string, a cable, chain, or similar one-dimensional continuous object, or by each end of a rod, truss member, or similar three-dimensional object
Answer:
O²⁻
Explanation:
Number of protons = 8
Number of neutrons = 9
Number of electrons = 10
What type of atom or ion is it = ?
Solution:
Protons are the positively charged particle in an atom
Neutrons do not carry any charges
Electrons are negatively charged particles
For this atom, the number of protons helps to identify what specie it is; so this is an oxygen atom.
Now,
Charge = Number of protons - Number of electrons
Charge = 8 - 10 = -2
The charge on the atom is -2 and so it is an oxygen ion with -2 charge
The ion is O²⁻