1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
15

A crate with a mass of m = 450 kg rests on the horizontal deck of a ship. The coefficient of static friction between the crate a

nd the deck is μs = 0.73. The coefficient of kinetic friction is μk = 0.59
Write an expression for the force Fv that must be applied to keep the block moving at a constant velocity.
What is the magnitude of the force Fv in newtons?
Physics
1 answer:
Zielflug [23.3K]3 years ago
4 0

Answer:F_{v} =\mu_{k} mg

Magnitude of the force is 2601.9 N

Explanation:

m = 450 kg

coefficient of static friction μs = 0.73

coefficient of kinetic friction is μk = 0.59

The force required to  start crate moving is F_{s} =\mu_{s} mg.

but once crate starts moving the force of friction is reduced  F_{v} =\mu_{k} mg.

Hence  to keep crate moving at constant velocity we have to reduce the  force pushing crate ie F_{v} =\mu_{k} mg.

Then the above pushing force will equal the frictional force due to kinetic friction and constant velocity is possible as  forces are balanced.

Magnitude of the force

F_{v} =\mu_{k} mg\\F_{v} =0.59 \times 450 \times 9.8\\F_{v} =2601.9  N

You might be interested in
A man on the Moon observes two spaceships coming toward him from opposite directions at speeds of 0.600c and 0.600c. What is the
vaieri [72.5K]

Answer:

If we use the equation for the transformation of velocities for moving frames:

v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'

v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)

or v' = 1.2 c / (1 + .36) = .88 c

v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u  (-.6 c) and we measure the speed of v as seen in the frame moving to the left

5 0
3 years ago
If a particle with a charge of +4.3 × 10−18 C is attracted to another particle by a force of 6.5 × 10−8 N, what is the magnitude
AveGali [126]

Answer: 1.5×10^10 N/C

Explanation:

E= F/q

Where E= magnitude of the electric field

F= force of attraction

q= charge of the given body

Given F= 6.5×10^-8 N

q= 4.3× 10^-18 C

Therefore, E = 6.5×10 ^-8/ 4.3×10^-18

E = 1.5×10^10 N/C

7 0
3 years ago
Earth travels fastest in January and slowest in July. What is the most likely explanation for this?
Keith_Richards [23]

Answer:

Earth is nearest the Sun in July and farthest away in July.

Explanation:

3 0
3 years ago
Read 2 more answers
Which statements about the two fossil images are correct?
tangare [24]
What fossil images, there are no pictures attached.
5 0
3 years ago
Read 2 more answers
A balloon is rising vertically upwards at a velocity of 10m/s. When it is at a height of 45m from the ground, a parachute bails
harina [27]

(a) 30.9 m

Let's analyze the motion of the parachutist. Its vertical position above the ground is given by

y=h+ut+\frac{1}{2}gt^2

where

h = 45 m is the initial height

u = 10 m/s is the initial velocity (upward)

t is the time

g = -9.8 m/s^2 is the acceleration of gravity (downward)

Substituting t=3 s , we find the height of the parachutist when it opens the parachute:

y=45 m+(10 m/s)(3 s)+\frac{1}{2}(-9.8 m/s^2)(3 s)^2=30.9 m

(b) 44.1 m

Here we have to find first the height of the balloon 3 seconds after the parachutist has jumped off from it. The vertical position of the balloon is given by

y = h + ut

where

h = 45 m is the initial height

u = 10 m/s is the initial velocity (upward)

t is the time

Substituting t = 3 s, we find

y = 45 m + (10 m/s)(3 s) = 75 m

So the distance between the balloon and the parachutist after 3 s is

d = 75 m - 30.9 m = 44.1 m

(c) 8.2 m/s downward

The velocity of the parachutist at the moment he opens the parachute is:

v = u +gt

where

u = 10 m/s is the initial velocity (upward)

t is the time

g = -9.8 m/s^2 is the acceleration of gravity (downward)

Substituting t = 3 s,

v = 10 m/s + (-9.8 m/s^2)(3 s)= -19.4 m/s

where the negative sign means it is downward

After t=3 s, the parachutist open the parachute and it starts moving with a deceleration of

a =+5 m/s^2

where we put a positive sign since this time the acceleration is upward.

The total distance he still has to cover till the ground is

d = 30.9 m

So we can find the final velocity by using

v^2-u^2 = 2ad

where this time we have u = 19.4 m/s as initial velocity. Taking the downward direction as positive, the deceleration must be considered as negative:

a = -5 m/s^2

Solving for v,

v=\sqrt{u^2 +2ad}=\sqrt{(19.4 m/s)^2+2(-5 m/s^2)(30.9 m)}=8.2 m/s

(d) 5.24 s

We can find the duration of the second part of the motion of the parachutist (after he has opened the parachute) by using

a=\frac{v-u}{t}

where

a = -5 m/s^2 is the deceleration

v = 8.2 m/s is the final velocity

u = 19.4 m/s is the initial velocity

t is the time

Solving for t, we find

t=\frac{v-u}{a}=\frac{8.2 m/s-19.4 m/s}{-5 m/s^2}=2.24 s

And added to the 3 seconds between the instant of the jump and the moment he opens the parachute, the total time is

t = 3 s + 2.24 s = 5.24 s

8 0
3 years ago
Other questions:
  • A 10 gram ball is rolling at 3 m/s. The ball has __________ energy. Calculate it. A 10 gram ball is held 2 meters from the groun
    15·1 answer
  • What is the relationship between potential energy and mass
    11·1 answer
  • A jet transport has a weight of 1.87 x 10⁶ N and is at rest on the runway. The two rear wheels are 16.0 m behind the front wheel
    15·1 answer
  • 1. List one way mitosis and meiosis are the same and one way they are different.
    10·1 answer
  • Two copper rods are separated by a small gap at B. Rod AB has a diameter of 200mm and rod BC has a diameter of 150mm. Find the f
    12·1 answer
  • When Maggie applies the brakes of her car, the car slows uniformly from 15.3 m/s to 0 m/s in 2.23 s. How far ahead of a stop sig
    9·1 answer
  • A large dog with a mass of 30 kg chases a car at 2 m/s. What is the<br> magnitude of its momentum?
    10·1 answer
  • Please help! you are amazing! brainliest!
    11·2 answers
  • How long does it take for a car to change its velocity from 10 m/s to 25 m/s if the acceleration is 5 m/s^2?
    13·1 answer
  • Que animales respiran por las branquias​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!