Answer:
<em>At 574.59 Kelvin, the Fahrenheit temperature will be 574.59 °F.</em>
Explanation:
We first need to find a relation between the Kelvin scale and the Fahranheit scale. We'll use the Celsius scale to relate them.
The Kelvin and Celsius scales are related by the formula:
K = °C + 273.15
Solving for °C:
°C = K - 273.15
Besides, the Kelvin and Celsius scales are related by:
°C = 5 ⁄ 9(°F - 32)
Now we find a temperature, say X, where both scales coincide. Equating both formulas:
X - 273.15=5 ⁄ 9(X - 32)
Multiply by 9:
9X - 2,458.35 = 5X - 160
Simplifying:
4X = 2,458.35 - 160=2,298.35
Solving:
X =2,298.35 / 4 = 574.59
At 574.59 Kelvin, the Fahrenheit temperature will be 574.59 °F.
Answer:
Since the momentum of the body remains constant ( conserved) the trolley slows down (its velocity reduces) since its mass increases.
Evolution of cyanobacteria that produce O2volcanic outgassing to create a thicker atmosphereformation of an ozone layer to block harmful radiationall of the above<span>only a and c
Are the options</span>
In step 1, to increase the potential energy, the iron will move towards the electromagnet.
In step 2, to increase the potential energy, the iron will move towards the electromagnet.
<h3>Potential energy of a system of magnetic dipole</h3>
The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.

where;
is the dipole moment- B is the magnetic field


Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;
- In step 1, to increase the potential energy, the iron will move towards the electromagnet.
- In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.
Learn more about potential energy in magnetic field here: brainly.com/question/14383738