Answer:
minimum angle is 128.69°
Explanation:
given data
player velocity with respect ground v1 = 3.5 m/s
ball velocity with respect himself v2 = 5.6 m/s
to find out
smallest angle
solution
we know ball velocity with respect field will be
ball velocity = v1 +v2
ball velocity = 3.5 + 5.6 = 9.1m/s
we consider angle that player hit ball is θ
then by as per figure triangle
cosθ = 
cosθ = 
θ = 51.31
so minimum angle is 180 - 51.31 = 128.69°
<span> For any body to move in a circle it requires the centripetal force (mv^2)/r.
In this case a ball is moving in a vertical circle swung by a mass less cord.
At the top of its arc if we draw its free body diagram and equate the forces in radial
direction to the centripetal force we get it as T +mg =(mv^2)/r
T is tension in cord
m is mass of ball
r is length of cord (radius of the vertical circle)
To get the minimum value of velocity the LHS should be minimum. This is possible when T = 0. So
minimum speed of ball v at top =sqrtr(rg)=sqrt(1.1*9.81) = 3.285 m/s
In the second case the speed of ball at top = (2*3.285) =6.57 m/s
Let us take the lowest point of the vertical circle as reference for potential energy and apllying the conservation of energy equation between top & bottom
we get velocity at bottom as 9.3m/s.
Now by drawing the free body diagram of the ball at the bottom and equating the net radial force to the centripetal force
T-mg=(mv^2)/r
We get tension in cord T=13.27 N</span>
Answer:
R = 28.125 ohms
Explanation:
Given that,
The voltage of a bulb, V = 4.5 V
Current, I = 0.16 A
We need to find the resistance of the filament. Using Ohm's law,
V = IR
Where
R is the resistance of the filament
So,

So, the resistance of the filament is equal to 28.125 ohms.
To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
Answer:
Currently in the united states using parallel system
Explanation:
because you can walk with the twomodes with internal combustion engine or running on electric power.