Newton's third law of motion. Because you are pushing the water backwards which will push you forwards
Explanation:
(a) v = 2π r / t
v = 2π (0.85 m) / (0.65 s)
v = 8.2 m/s
(b) a = v² / r
a = (8.2 m/s)² / (0.85 m)
a = 79 m/s²
(c) F = ma
F = (0.013 kg) (79 m/s²)
F = 1.0 N
Answer:
v = 0.059 m/s
Explanation:
To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:
(1)
m: mass of the ball = 0.400kg
M: mass of Olaf = 75.0 kg
v1i: initial velocity of the ball = 11.3m/s
v2i: initial velocity of Olaf = 0m/s
v: final velocity of Olaf and the ball
You solve the equation (1) for v and replace the values of all variables:

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s
Magnitude of acceleration = (change in speed) / (time for the change) .
Change in speed = (ending speed) - (starting speed)
= zero - (43 m/s)
= -43 m/s .
Magnitude of acceleration = (-43 m/sec) / (0.28 sec)
= (-43 / 0.28) (m/sec) / sec
= 153.57... m/s²
= 1.5... x 10² m/s² .
Answer:
a) 
b)
Explanation:
Let´s use Doppler effect, in order to calculate the observed frequency by the byciclist. The Doppler effect equation for a general case is given by:

where:





Now let's consider the next cases:




The data provided by the problem is:

The problem don't give us aditional information about the medium, so let's assume the medium is the air, so the speed of sound in air is:

Now, in the first case the observer alone is in motion towards to the source, hence:

Finally, in the second case the observer alone is in motion away from the source, so:
