1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
3 years ago
15

What is the formula to calculate the thickness of a test tube?​

Physics
1 answer:
Maslowich3 years ago
4 0

Answer:

Having the inside dimensions (ID) and the outside dimensions (OD) will allow you to figure out the wall thickness on tubing. You would need to subtract the ID from the OD and then divide by two. This number is the wall thickness.

Explanation:

You might be interested in
Two workers are sliding 350 kgkg crate across the floor. One worker pushes forward on the crate with a force of 390 NN while the
svetoff [14.1K]

Answer:

\mu_k=0.18

Explanation:

First, we write the equations of motion for each axis. Since the crate is sliding with constant speed, its acceleration is zero. Then, we have:

x: T+F-f_k=0\\\\y:N-mg=0

Where T is the tension in the rope, F is the force exerted by the first worker, f_k is the frictional force, N is the normal force and mg is the weight of the crate.

Since f_k=\mu_k N and N=mg, we can rewrite the first equation as:

T+F-\mu_k mg=0

Now, we solve for \mu_k and calculate it:

\mu_k=\frac{T+F}{mg}\\ \\\mu_k =\frac{220N+390N}{(350kg)(9.8m/s^{2})} =0.18

This means that the crate's coefficient of kinetic friction on the floor is 0.18.

6 0
3 years ago
Two children are riding on a merry-go-round that is rotating with a constant angular speed. Abbie is one meter from the center o
Ainat [17]

Answer:

  • <em>Abbie’s acceleration is (1/2) Zak’s acceleration.</em>

Explanation

1. <u>Data</u>:

a) ω = constant

b) Abbie: r₁ = 1 m

c) Zak: r₂ = 2 m

d) Ac₁ = ? Ac₂

2. <u>Formulae</u>

  • Ac = ω² r

3. <u>Solution</u>:

a) Abbie:

  • Ac₁ = ω² r₁  =  ω² (1m)

b) Zack:

  • Ac₂ = ω² r₂  = ω² (2m)

c) Divide Ac₁ / Ac₂

  • Ac₁ / Ac₂ =  ω² (1m) / [ω² (2m) ] = 1/2

⇒      Ac₁ = (1/2) Ac₂ = Ac₂ / 2 = 0.5 Ac₂

5 0
3 years ago
Please help I don't know how to answer these questions!
Yuki888 [10]

1) The potential energy is the most at the highest position and the least at the equilibrium position

2) The kinetic energy is the most at the equilibrium position and  the least at the highest position

Explanation:

1)

The potential energy of an object is the energy possessed by the object due to its position in a gravitational field; mathematically, it is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the pendulum in this problem, m is the mass of the bob, and h is the height of the above relative to the ground. We see from the formula that the potential energy is directly proportional to the height:

PE\propto h

This means that:

  • The potential energy is the most when the bob is at the highest position
  • The potential energy is the least when the bob is at the equilibrium position,  which is the lowest position

2)

We can solve this part by applying the law of conservation of energy: in fact, the total mechanical energy of the pendulum (sum of potential and kinetic energy) is constant at any time during the motion,

E=KE+PE=const.

where KE is the kinetic energy.

From the equation above, we observe that:

  • When PE is maximum, KE must be at minimum
  • When PE is minimum, KE must be maximum

Therefore, this implies that:

  • The kinetic energy is the most when the potential energy is the least, i.e. at the equilibrium position
  • The kinetic energy is the least when the potential energy is the most, i.e. at the highest position

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

6 0
3 years ago
A trombone has a variable length. When a musician blows into the mouthpiece and causes air in the tube of the horn to vibrate, t
Lilit [14]

Answer:

The frequency increases.

Explanation:

When the Musician draws the slide in the length of the horn gets shorter, which causes a decrease in the wavelength. A decrease in the wave length results in an increase in frequency.

Note:

The diameter of the horn has an effect on frequency, so a wider horn is effectively a long horn - open end correction ( distance between the the antinode and the open end of a pipe).

Frequency also depends on how hard the musician blows the trombone. The musician can change the frequency with the lip pressure being applied.

6 0
3 years ago
What is the kinetic Energy of the 80 kg skydiver if he is falling at 60 m/sec?
Mariulka [41]
KE = 1/2 x 80 x 60^2
KE = 144000
5 0
3 years ago
Read 2 more answers
Other questions:
  • Consider lifting a box of mass m to a height h using two different methods: lifting the box directly or lifting the box using a
    8·1 answer
  • Which types of atoms usually<br> become negative ions?
    5·1 answer
  • A man stands on a platform that is rotating (without friction) with an angular speed of 2.4 rev/s; his arms are outstretched and
    14·1 answer
  • What is the weight of a 435 kg object on earth? 957.98 N 957.98 N None of these answers are correct. None of these answers are c
    9·1 answer
  • A bomb at rest at the origin of an xy-coordinate system explodes into three pieces. Just after the explosion, one piece, of mass
    10·1 answer
  • Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released qu
    8·1 answer
  • 1.4 The inside of a sports hall measures 80 m
    9·1 answer
  • Place these bodies of our solar system in the proper order of formation.
    6·2 answers
  • Your're sailing a boat from spain west to florida. which winds would you use?
    8·1 answer
  • What is the velocity of an object that has been in free fall for 2.5s?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!