Answer:
a) 50μC
b) 37.45 m/s
Explanation:
a) If the spheres are connected the charge in both spheres tends to be equal. This because is the situation of minimum energy.
Thus, you have:

Hence, each sphere has a charge of 50μC.
b) You use the fact that the total work done by the electric force is equal to the change in the kinetic energy of the sphere. Then, you use the following equations:
![\Delta W=\Delta K\\\\\int_{0.4}^\infty Fdr=\frac{1}{2}m[v^2-v_o^2]\\\\F=k\frac{Q^2}{r^2}\\\\v_o=0m/s\\\\m=0.08kg\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=kQ^2[-\frac{1}{r}]_{0.4}^{\infty}=\frac{kQ^2}{0.4m}=\frac{(8.98*10^9Nm^2/C^2)(50*10^{-6}C)^2}{0.4m}\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=56.125J](https://tex.z-dn.net/?f=%5CDelta%20W%3D%5CDelta%20K%5C%5C%5C%5C%5Cint_%7B0.4%7D%5E%5Cinfty%20Fdr%3D%5Cfrac%7B1%7D%7B2%7Dm%5Bv%5E2-v_o%5E2%5D%5C%5C%5C%5CF%3Dk%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5C%5C%5C%5Cv_o%3D0m%2Fs%5C%5C%5C%5Cm%3D0.08kg%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3DkQ%5E2%5B-%5Cfrac%7B1%7D%7Br%7D%5D_%7B0.4%7D%5E%7B%5Cinfty%7D%3D%5Cfrac%7BkQ%5E2%7D%7B0.4m%7D%3D%5Cfrac%7B%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%2850%2A10%5E%7B-6%7DC%29%5E2%7D%7B0.4m%7D%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3D56.125J)
where you have used the Coulomb constant = 8.98*10^9 Nm^2/C^2
Next, you equal the total work to the change in K:

hence, the speed of the spheres is 37.45 m/s
Well latent fingerprints are made of oil and sweat and generally materials that you can't see very easily, so it should be that.
Hope this helps :D
Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
Answer:
<u>We are given:</u>
displacement (s) = 130 m
acceleration (a) = -5 m/s²
final velocity (v) = 0 m/s [the cars 'stops' in 130 m]
initial velocity (u) = u m/s
<u>Solving for initial velocity:</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(0)² - (u)² = 2(-5)(130)
-u² = -1300
u² = 1300
u = √1300
u = 36 m/s
An electrical <span>current is </span>caused<span> by </span>flow<span> of free electrons from one atom to another. </span>