1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
5

A block with mass 0.470 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on

the floor. A second identical block is dropped onto the first from a height of 4.40 m above the first block and sticks to it. What is the maximum elastic potential energy stored in the spring during the motion of the blocks after the collision?
Physics
1 answer:
a_sh-v [17]3 years ago
4 0

Answer: elastic potential energy = 20.27 J

Explanation:

Given that the

Mass M = 0.470 kg

Height h = 4.40 m

Spring constant K = 85 N/m

The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.

But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.

That is

K .E = P.E = mgh

Where g = 9.8m/s^2

Substitutes all the parameters into the formula

K.E = 0.470 × 9.8 × 4.4

K.E = 20.27 J

Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.

You might be interested in
A machine can never be 100% efficient because some work is always lost due to what?
katrin [286]

A machine can never be 100% efficient because some work is always lost due to the lack of materials or equipment that would convert work by 100%. It follows the second law of entropy. The ideal engine is known as Carnot’s engine having a 100% efficiency. So far, no engine has ever gotten to 100%.

8 0
3 years ago
Read 2 more answers
(a) A space vehicle is launched vertically upward from the Earth's surface with an initial speed of vi that is comparable to but
ad-work [718]

Energy Conservation Theory,

(k+v)_i=(k+v)_f \quad \text { (No air resistone)}\\

\frac{1}{2} m v_i^2-\frac{G m M_\epsilon}{R_\epsilon}=0-\frac{G m M_\epsilon}{R_\epsilon+h}

\frac{1}{2} m v_i^2-\frac{G m M_\epsilon}{R_\epsilon}=0-\frac{G m M_\epsilon}{R_\epsilon+h}

v_{e x^2}{ }^2-v_i^2=\frac{v_{e^2 R_t} R_t}{R_t t h}\\&\frac{1}{v_{B C^2-v_1^2}^2}=\frac{R_E+h}{v_{e^2 R_E} R_E}\\\\\\h=\frac{R_E V_1^2}{v_{\text {esc }}^2-v_1^{\beta^2}}

<h3>What is law of  energy conservation?</h3>

The principle of energy conservation states that energy is neither created nor destroyed.  It may change from one sort to another. Just like the mass conservation rule, the legitimacy of the preservation of energy depends on experimental perceptions; hence, it is an experimental law. The law of preservation of energy, too known as the primary law of thermodynamics

To learn more about Energy Conservation Theory, visit;

brainly.com/question/8004680

#SPJ4

7 0
1 year ago
A 18.0-kg rock is sliding on a rough, horizontal surface at 7.10 m/s and eventually stops due to friction. the coefficient of ki
Bond [772]
A = .3*g = 2.94 m/s² 

<span>t = v/a = 9/2.94 = 3.061 sec </span>

<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
4 0
3 years ago
Does a car that is slowing down always have a negative acceleration explain
Zina [86]
No, because sometimes you have to stop at stop signs and stop lights.
4 0
3 years ago
A generator is designed to produce a maximum emf of 190 V while rotating with an angular speed of 3800 rpm. Each coil of the gen
Zinaida [17]

Answer:

The number of turns of wire needed is 573.8 turns

Explanation:

Given;

maximum emf of the generator, = 190 V

angular speed of the generator, ω = 3800 rev/min =

area of the coil, A = 0.016 m²

magnetic field, B = 0.052 T

The number of turns of the generator is calculated as;

emf = NABω

where;

N is the number of turns

\omega = 3800 \frac{rev}{min} \times \frac{2\pi}{1 \ rev} \times \frac{1 \min}{60 \ s } = 397.99 \ rad/s

N = \frac{emf}{AB\omega } \\\\N = \frac{190}{0.016 \times 0.052\times 397.99} \\\\N = 573.8 \ turns

Therefore, the number of turns of wire needed is 573.8 turns

4 0
3 years ago
Other questions:
  • Help with this voltage drop?<br> I'd also like to know how you did it.
    8·1 answer
  • Stars are called blackbody radiators because they
    14·1 answer
  • What is the difference between an atom in the ground state and an atom in an excited state
    13·2 answers
  • What is the answer to this question
    14·1 answer
  • Which measurement is a potential difference?
    12·1 answer
  • A light wave has a frequency of <img src="https://tex.z-dn.net/?f=%286%20%5Ctimes%20%7B10%7D%5E%7B8%7D%29." id="TexFormula1" tit
    13·2 answers
  • Sabiendo que el indice de refracción dela gua es 1,33 calcula el ángulo de refracción resultante para un rayo de luz que incide
    14·1 answer
  • HELP ASAP!!!!!!! PLEASE WILL GIVE BRAINLIEST
    11·1 answer
  • Acceleration is defined as the rate of change of position true or false
    7·2 answers
  • Which of the following is NOT an indicator of a chemical reaction?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!