The time that would be saved if the delicious chicken breast were thawed on the kitchen counter instead, given that room temperature is around 69 F could be calculated by :
tf - ti = 5.7
hope this helps
a) we can answer the first part of this by recognizing the player rises 0.76m, reaches the apex of motion, and then falls back to the ground we can ask how
long it takes to fall 0.13 m from rest: dist = 1/2 gt^2 or t=sqrt[2d/g] t=0.175
s this is the time to fall from the top; it would take the same time to travel
upward the final 0.13 m, so the total time spent in the upper 0.15 m is 2x0.175
= 0.35s
b) there are a couple of ways of finding thetime it takes to travel the bottom 0.13m first way: we can use d=1/2gt^2 twice
to solve this problem the time it takes to fall the final 0.13 m is: time it
takes to fall 0.76 m - time it takes to fall 0.63 m t = sqrt[2d/g] = 0.399 s to
fall 0.76 m, and this equation yields it takes 0.359 s to fall 0.63 m, so it
takes 0.04 s to fall the final 0.13 m. The total time spent in the lower 0.13 m
is then twice this, or 0.08s
Weight equals mass times gravitational acceleration=400N, so mass=400/9.8=41kg approx.
Answer:
(A) more rapidly than
Explanation:
With higher temperatures, object's molecules (and atoms) have higher kinetic energy which is due to faster "jiggling" (vibrations). On a hot day these vibrations in the material the sidewalk is made of are more rapid than on a cold day, just as their temperatures differ.
Answer:
Potential energy
Explanation:
Before release, the catapult has potential energy stored in a tension of torsion device in it. Normally a flexible bow like object that could be made of wood or of metal.