Answer:


Explanation:
From the question we are told that
Initial velocity of 60 m/s
Wind speed 
Generally Resolving vector mathematically

Generally the equation Pythagoras theorem is given mathematically by



Therefore Resultant velocity (m/s)

b)Resultant direction
Generally the equation for solving Resultant direction

Therefore


Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
Answer:
A) 
B) 
Explanation:
Given:
mass of car, 
A)
frequency of spring oscillation, 
We knkow the formula for spring oscillation frequency:




Now as we know that the springs are in parallel and their stiffness constant gets added up in parallel.
<u>So, the stiffness of each spring is (as they are identical):</u>



B)
given that 4 passengers of mass 70 kg each are in the car, then the oscillation frequency:



Answer:
15.2 s
Explanation:
Convert hp to W:
55.0 hp × 746 W/hp = 41,030 W
Power = energy / time
41030 W = 6.22×10⁵ J / t
t = 15.2 s
Answer:

Explanation:
As we know that we board in the car of ferris wheel at the bottom position
So we will have
final height of the car at angular displacement given as


here we know that


so we have

