Answer:
The distance covered by the rocket after fuel ran out is 
Explanation:
Given that the rocket moves with an acceleration 
time 
Since the rocket starts from rest initial velocity 
The distance it travelled within this time is given by

Velocity at this point is given by 

Given that at this height it runs out of fuel but travels further. Here final velocity
(maximum height), initial velocity
and time to zero velocity 
Thus it travels
more after fuel running out. The distance covered during this period is given

Answer:
x = 45 cm
Explanation:
Given that,
The length of a rod, L = 50 cm
Mass, m₁ = 0.2 kg
It is at 40cm from the left end of the rod.
We need to find the distance from the left end of the rod should a 0.6kg mass be hung to balance the rod.
The centre of mass of the rod is at 25 cm.
Taking moments of both masses such that,

The distance from the left end is 40+5 = 45 cm.
Hence, at a distance of 45 cm from the left end it will balance the rod.
Answer:
The value is 
Explanation:
From the question we are told that
The volume of liquid nitrogen is 
The density of nitrogen at gaseous form is
= The dry air at sea level
Generally the density of nitrogen at liquid form is

And this is mathematically represented as

=> 
Now the density of gaseous nitrogen is

=> 
Given that the mass is constant


=> 
Answer:
displacement at 45 s = 30
65 s = 50
So the average speed over the interval from 45 s to 65 s is
(50 - 30) cm / 20 s = 1 cm / sec
As a check an average speed of 1 cm / sec for 20 sec will produce a
displacement of 1 cm / sec * 20 sec = 20 cm or from 30 to 50 cm