(a) 25lx
(b) 11.11lx
<u>Explanation:</u>
Illuminance is inversely proportional to the square of the distance.
So,

where, k is a constant
So,
(a)
If I = 100lx and r₂ = 2r Then,

Dividing both the equation we get

When the distance is doubled then the illumination reduces by one- fourth and becomes 25lx
(b)
If I = 100lx and r₂ = 3r Then,

Dividing equation 1 and 3 we get

When the distance is tripled then the illumination reduces by one- ninth and becomes 11.11lx
Answer:
The correct answer to the question is (A)
When it hits the heavy rope, compared to the wave on the string, the wave that propagates along the rope has the same (A) frequency
Explanation:
The speed of a wave in a string is dependent on the square root of the tension ad inversely proportional to the square root of the linear density of the string. Generally, the speed of a wave through a spring is dependent on the elastic and inertia properties of the string

Therefore if the linear density of the heavy rope is four times that of light rope the velocity is halved and since
v = f×λ therefore v/2 = f×λ/2
Therefore the wavelength is halved, however the frequency remains the same as continuity requires the frequency of the incident pulse vibration to be transmitted to the denser medium for the wave to continue as the wave is due to vibrating particles from a source for example
Answer:
all I know is C
are there more questions? anyone?
-KARL IS STOOPID
Explanation:
Take 68.2/60 = 1.137 hr
take 56.9/1.137 = 50.043 mi/hr
take 189/211 = 0.896
24.8/2 = 12.4 m
12.4/82.3 = 0.15s
Answer:
40 meters. look for the dot above the 20 on the x-axis and follow it over to the left.
Explanation: