In BPC
tan\theta =a/b = 3/4
\theta = tan^-1(0.75)
\theta = 36.87 deg
BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m
Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C
Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C
Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C
Net electric field along X-direction is given as
Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C
Net electric field along X-direction is given as
Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C
Net electric field is given as
E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C
Answer:
93.125 × 10^(19)
Explanation:
We are told the asteroid has acquired a net negative charge of 149 C.
Thus;
Q = -149 C
charge on electron has a value of:
e = -1.6 × 10^(-19) C
Now, for us to determine the excess electrons on the asteroid, we will just divide the net charge in excess on the asteroid by the charge of a single electron.
Thus;
n = Q/e
n = -149/(-1.6 × 10^(-19))
n = 93.125 × 10^(19)
Thus, it has 93.125 × 10^(19) more electrons than protons
Answer:
The child fell off and died.
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m