Answer:
providing energy to an atom can allow the electron in its non valence shell to obtain energy and move to a higher energy orbital and act as a valence electron.
Explanation:
Answer:
0.372 kg
Explanation:
The collision between the bullet and the block is inelastic, so only the total momentum of the system is conserved. So we can write:
(1)
where
is the mass of the bullet
is the initial velocity of the bullet
is the mass of the block
is the velocity at which the bullet and the block travels after the collision
We also know that the block is attached to a spring, and that the surface over which the block slides after the collision is frictionless. This means that the energy is conserved: so, the total kinetic energy of the block+bullet system just after the collision will entirely convert into elastic potential energy of the spring when the system comes to rest. So we can write
(2)
where
k = 205 N/m is the spring constant
x = 35.0 cm = 0.35 m is the compression of the spring
From eq(1) we get

And substituting into eq(2), we can solve to find the mass of the block:

1). an electric motor running
Electrical energy is changing into kinetic energy and a little bit of heat
2). light a match
The chemical energy stored in the match head changes into light and heat energy.
3). a light bulb
Electrical energy is changed into light and heat energy.
The chemical symbol always begins with a capital letter.
.
Answer:
Static, sliding, and rolling friction occur between solid surfaces. Static friction is strongest, followed by sliding friction, and then rolling friction, which is weakest. Fluid friction occurs in fluids, which are liquids or gases.
Explanation: