1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
4 years ago
8

The volume of water in the Pacific Ocean is about 7.0 × 10 8 km 3 . The density of seawater is about 1030 kg/m3. (a) Determine t

he gravitational potential energy of the Moon–Pacific Ocean system when the Pacific is facing away from the Moon. (b) Repeat the calculation when Earth has rotated so that the Pacific Ocean faces toward the Moon. (c) Estimate the maximum speed of the water in the Pacific Ocean due to the tidal influence of the Moon. For the sake of the calculations, treat the Pacific Ocean as a pointlike object (obviously a very rough approximation)
Physics
1 answer:
Novay_Z [31]4 years ago
8 0

To solve the problem it is necessary to consider the concepts related to Potential Energy and Kinetic Energy.

Potential Energy because of a planet would be given by the equation,

PE=\frac{GMm}{r}

Where,

G = Gravitational Universal Constant

M = Mass of Ocean

M = Mass of Moon

r = Radius

From the data given we can calculate the mass of the ocean water through the relationship of density and volume, then,

m = \rho V

m = (1030Kg/m^3)(7*10^8m^3)

m = 7.210*10^{11}Kg

It is necessary to define the two radii, when the ocean is far from the moon and when it is facing.

When it is far away, it will be the total diameter from the center of the earth to the center of the moon.

r_1 = 3.84*10^8 + 6.4*10^6 = 3.904*10^8m

When it's near, it will be the distance from the center of the earth to the center of the moon minus the radius,

r_2 = 3.84*10^8-6.4*10^6 - 3.776*10^8m

PART A) Potential energy when the ocean is at its furthest point to the moon,

PE_1 = \frac{GMm}{r_1}

PE_1 = \frac{(6.61*10^{-11})*(7.21*10^{11})*(7.35*10^{22})}{3.904*10^8}

PE_1 = 9.05*10^{15}J

PART B) Potential energy when the ocean is at its closest point to the moon

PE_2 = \frac{GMm}{r_2}

PE_2 = \frac{(6.61*10^{-11})*(7.21*10^{11})*(7.35*10^{22})}{3.776*10^8}

PE_2 = 9.361*10^{15}J

PART C) The maximum speed. This can be calculated through the conservation of energy, where,

\Delta KE = \Delta PE

\frac{1}{2}mv^2 = PE_2-PE_1

v=\sqrt{2(PE_2-PE_1)/m}

v = \sqrt{\frac{2*(9.361*10^{15}-9.05*10^{15})}{7.210*10^{11}}}

v = 29.4m/s

You might be interested in
Which example is NOT the proper use of a casting of a toolmark?
Reika [66]
When we say toolmark, this describes as the mark that is produced by a particular tool. This is typically used in forensic science for identification. Based on the examples above, the one that is not the proper use of casting of a toolmark is option B. Hope this helps.
4 0
3 years ago
A flat surface is in a uniform magnetic field. Given only the area of the surface and the magnetic flux through the surface, it
Tasya [4]

Answer:

Given the area A of a flat surface and the magnetic flux through the surface \Phi it is possible to calculate the magnitude \frac{\Phi}{A}=B\ cos \theta.

Explanation:

The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux \Phi is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (m^{2}). So 1 Wb=1 T.m².

For a flat surface S of area A in a uniform magnetic field B, with \theta being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

                                                     \Phi=B\ A\ cos\theta

We are told the values of \Phi and B, then we can calculate the magnitude

                                                      \frac{\Phi}{A}=B\ cos\theta

3 0
3 years ago
How did planck find the correct curve for the specturm of light emitted by a hot obkect?
Neko [114]

Planck find the correct curve for the specturm of light emitted by a hot object by vibrational energies of the atomic resonators were quantized.

<h3>Briefing :</h3>
  • The energy density of a black body between λ and λ + dλ is the energy E=hc/λ of a mode times the density of states for photons, times the probability that the mode is occupied. 
  • This is Planck's renowned equation for a black body's energy density.
  • According to this, electromagnetic radiation from heated bodies emits in discrete energy units or quanta, the size of which depends on a fundamental physical constant (Planck's constant). The basis of infrared imaging is the correlation between spectral emissivity, temperature, and radiant energy, which is made possible by Planck's equation.

Learn more about the Planck's constant with the help of the given link:

brainly.com/question/27389304

#SPJ4

3 0
1 year ago
A string, stretched between two fixed posts, forms standing-wave resonances at 325 Hz and 390 Hz. What is the largest possible v
Pavel [41]

Answer:

65

Explanation:

The resonant frequencies for a fixed string is given by the formula  nv/(2L).  

Where n is the multiple .

v is speed in m/s .

The difference between any two resonant frequencies is given by v/(2L)= fn+1 – fn

fundamental frequency means n=1

i.e  fn+1 – fn = 390 -325

                      =  65

3 0
4 years ago
What os the term for the smallest bit into which chemical substance can be divided and still have the properties of that substan
Ostrovityanka [42]

That's a molecule of the substance.  You can break the molecule down further, into the atoms that make it up, but those don't have the properties of the original  'compound'.

Here's an example:

-- Sodium is a soft, slippery metal, that explodes when water touches it.

-- Chlorine is a poisonous green gas.

When an atom of Sodium and an atom of Chlorine combine, they make one molecule of a substance called "Sodium Chloride".  That's SALT !  It isn't green, it isn't a gas, it isn't poisonous, it isn't soft and slippery, and it doesn't explode when water touches it.

3 0
3 years ago
Other questions:
  • Which facts describe the rain forest called the Selva?
    5·2 answers
  • Which of the following waves are mechanical waves?
    11·2 answers
  • Which statement best describes the scientists who contributed to our current body of scientific knowledge
    12·1 answer
  • If you are driving 95 km/h along a straight road and you look to the side for 2.0s, how far do you travel during this inattentiv
    13·1 answer
  • When a candle burns, which forms of energy does the chemical energy in the candle change to?
    5·1 answer
  • If a net force of 25 N is exerted over a distance of 4 m to the right on a 2 kg mass initially at rest and moves it, what is the
    11·1 answer
  • Could you use 6.75 when measuring the<br> pencil?<br> no<br> yes
    5·2 answers
  • Consider the average speed of a runner who jogs around a track four times. The distance (400m) remains constant for each lap. Ho
    9·1 answer
  • A metal spoon becomes hot after being left in a pan of boiling water. this is an example of _____. conduction reflection radiati
    10·2 answers
  • A two-turn circular wire loop of radius 0.63 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.219 T. I
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!