Answer:
Energy loss per minute will be 
Explanation:
We have given the star produces power of 
We know that 1 W = 1 J/sec
So 
Given time = 1 minute = 60 sec
So the energy loss per minute 
We multiply with 60 we have to calculate energy loss per minute
Leaning against a brick wall.
All the others use scientific forces of work.
-Steel jelly.
Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass
× Acceleration
= Mass
× Acceleration
so
Mass
/ Mass
= Acceleration
/ Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass
/ Mass
= 1 / 1.26
Mass
/ Mass
= 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]
Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R