Because if they are submerged in the solvent, they would dissolve! This would prevent them from seperating and not allow you to actually record anything
Answer:
439.7nm
Explanation:
Energy of a quantum can be calculated using below formula
E=hv...........eqn(1)
But v=λ/ c .........eqn(2)
If we substitute eqn(2) into eqn(1) we have
E= hc/(λ)
Where E= energy
h= Plank's constant= 6.62607004 × 10-34 m2 kg / s
c= speed of light
c= 2.998 × 10^8 m/s
λ= wavelength= ?
But the energy was given in Kj , it must be converted to Kj/ photon for unit consistency.
Energy E= 272 kJ/mol × 1mol/6.02× 10^23
Energy= 451.83× 10^-24 Kj/ photon
E= hc/(λ)...........eqn(1)
If we make λ subject of the formula
λ= hc/E
Then substitute the values we have
λ= [(6.626 × 10^-34) × (2.998 × 10^8)]/451.83× 10^-24
λ=(0.00043965) × (1Kj/1000J) × (10^9nm/1m)
λ=439.7nm
Hence, the longest wavelength of radiation with enough energy to break carbon-sulfur bonds is 439.7nm
Temperature change, colour change, releasing gas, bubbles and change in odor
The speed and wavelength changes as a waves travels to a different depth. Slower and bigger amplitudes in shallower depths. Freq does not change
<u>Answer:</u> The fugacity coefficient of a gaseous species is 1.25
<u>Explanation:</u>
Fugacity coefficient is defined as the ratio of fugacity and the partial pressure of the gas. It is expressed as 
Mathematically,

Partial pressure of the gas is expressed as:

Putting this expression is above equation, we get:

where,
= fugacity coefficient of the gas
= fugacity of the gas = 25 psia
= mole fraction of the gas = 0.4
P = total pressure = 50 psia
Putting values in above equation, we get:

Hence, the fugacity coefficient of a gaseous species is 1.25