Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.
We will measure all angles from West, the negative x-axis and divide the journey into 3 parts:
P1 = 370y
P2 = 410cos(45)x + 410sin(45)y = 290x + 290y
P3 = 370cos(270 - 28)x + 370sin(270 - 28) = -174x - 327y
Overall displacement:
x = 290 - 174 = 116 m
y = 370 + 290 - 327 = 333 m
displacement = √(116² + 333²)
= 353 m
Direction:
tan(∅) = y/x
∅ = tan⁻¹ (333 / 116)
∅ = 70.8° from West.
Answer:
You could try finding a familiar peer to join the activity with your child. Or ask your child who their friends are at school, or what they look for in a friend at school.
Answer:
Psm = 30.66 [Psig]
Explanation:
To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.
P * v = R * T
where:
P = pressure [Pa]
v = specific volume [m^3/kg]
R = gas constant for air = 0.287 [kJ/kg*K]
T = temperature [K]
<u>For the initial state</u>
<u />
P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)
T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)
Therefore we can calculate the specific volume:
v1 = R*T1 / P1
v1 = (0.287 * 270.4) / 266.8
v1 = 0.29 [m^3/kg]
As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.
V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.
T2 = 43 + 273 = 316 [K]
P2 = R*T2 / V2
P2 = (0.287 * 316) / 0.29
P2 = 312.73 [kPa]
Now calculating the manometric pressure
Psm = 312.73 -101.325 = 211.4 [kPa]
And converting this value to Psig
Psm = 30.66 [Psig]