Answer:
6.75m/s
Explanation:
using the second equation of motion, the time is calculated.
and with the formula a= (v - u)/t
where a is acceleration but in this case it's deceleration (and should be negated as you solve it ) .
v is final velocity
u is initial velocity
t is time taken
Answer:
113 miles
Explanation:
45.00 x 2.50= 1.12.5 so 113 miles in 2.50 hours
The image of the water tower and the houses is in the attachment.
Answer: (a) P = 245kPa;
(b) P = 173.5 kPa
Explanation: <u>Gauge</u> <u>pressure</u> is the pressure relative to the atmospheric pressure and it is only dependent of the height of the liquid in the container.
The pressure is calculated as: P = hρg
where
ρ is the density of the liquid, in this case, water, which is ρ = 1000kg/m³;
When it is full the reservoir contains 5.25×10⁵ kg. So, knowing the density, you know the volume:
ρ = 
V = ρ/m
V = 
V = 525 m³
To know the height of the spherical reservoir, its diameter is needed and to determine it, find the radius:
V = 
![r = \sqrt[3]{ \frac{3}{4\pi } .V}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%7D%7B4%5Cpi%20%7D%20.V%7D)
r = ![\sqrt[3]{\frac{525.3}{4\pi } }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B525.3%7D%7B4%5Cpi%20%7D%20%7D)
r = 5.005 m
diameter = 2*r = 10.01m
(a) Height for House A:
h = 15 + 10.01
h = 25.01
P = hρg
P = 25.01.10³.9.8
P = 245.10³ Pa or 245kPa
(b) h = 25 - 7.3
h = 17.71
P = hρg
P = 17.71.1000.9.8
P = 173.5.10³ Pa or 173.5 kPa
health conditions and diseases
Answer:
T = T
Explanation:
Time period of a simple pendulum is not affected by the mass of the bob. As we know,
. There is no factor of mass affecting when we derived the equation. The basic reason behind the time period is not affected is because of mass dependence on angular acceleration. As the mass increases the acceleration increase and the Time Period remains constant.