here as it is given that x component of the vector is positive while y component of the vector is negative so we can say the vector must inclined in Fourth quadrant.
So angle must be more than 270 degree and less than 360 degree
Now in order to find the value we can say that




so it is inclined at above angle with X axis in fourth quadrant
Now if angle is to be measured counterclockwise then its magnitude will be

so the correct answer will be 305 degree
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Answer:
C: You must know force and distance to calculate both.
Explanation:
A force is said to have done work, when it has succeeded in causing displacement in an object from its starting point.
Power can be defined as the rate of doing work.
The work can be calculated using the following formula:
Work done = Force × Displacement
The power can be calculated using the following formula:
Power = Work \ Time
In order to calculate the work and power, the force and distance should be known. The force and distance will help in the calculating the work, which will in turn help in the calculation of the power of the object.
Hence, the answer is you must know force and distance to calculate both.