I believe you are referring zero as the exponent. <span>Any number (except 0) with exponent 0 is defined to mean 1.
</span>
For one thing, there is a rule:
<span> a^m/ a^m = a^m-m = a^0
</span>But (when a is not equal to <span>0),
</span>
a^m/ a^m = 1
Therefore, we must define a^0 as 1.
<h3>
Answer:</h3>
0.000538 mol Pb
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.24 × 10²⁰ particles Pb (lead)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:
- Multiply/Divide:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
Our final answer is in 3 sig figs, no need to round.
Answer:
D
Explanation:
The high jump of ionization energy indicates that we are trying to remove electron from noble gas configuration state.
The ionization energy data specifies that the Elements are from group 1 at period 3 or greater.
Removing the first electron require 496 kJ and the second ionization energy jump significantly due to the removal of electron from the noble gas configuration which is logical because electron try to maintain the especially stable state.
Answer:
the reactants are 2h2 and 02. the products are 2h20
have a great day my friend ;)
<333