1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
3 years ago
5

Illustrated here are three different __________ of carbon. They vary by the number of __________.

Physics
2 answers:
Alchen [17]3 years ago
8 0

Answer:

the answer is D

Explanation:

isotopes; neutrons In a neutral atom of an element, the number of protons and electrons are constant. Isotopes vary in the number of neutral neutrons.

Elena L [17]3 years ago
4 0

Your answer is D: isotopes; neutrons.

You might be interested in
Imagine holding a basketball in both hands, throwing it straight up as high as you can, and then catching it when it falls. At w
Alisiya [41]

Answer:

C. At the instant the ball reaches its highest point.

Explanation:

When a body is thrown up, it tends to come down due to the influence of gravitational force acting on the body. The body will be momentarily at rest at its maximum point before falling. At this maximum point, the velocity of the body is zero and since force acting on a body is product of the mass and its acceleration, the force acting on the body at that point will be "zero"

Remember, F = ma = m(v/t)

Since v = 0 at maximum height

F = m(0/t)

F = 0N

This shows that the force acting on the body is zero at the maximum height.

4 0
2 years ago
The diagrams show objects’ gravitational pull toward each other. Which statement describes the relationship between diagram X an
creativ13 [48]

' C ' is the only correct statement on the list.  We don't know anything about diagram-x or diagram-y because we can't see them.

8 0
3 years ago
Read 2 more answers
Guys please help me out I’ll give extra points
zvonat [6]

Answer: h = 3.34 m

Explanation:

If the hat is thrown straight up, then at its highest point it has no motion and no kinetic energy. All energy is potential energy

PE = mgh

h = PE/mg = 4.92 / (0.150(9.81)) = 3.34352... ≈3.34 m

8 0
3 years ago
A 500 kg wrecking ball is knocking down a wall. When it is pulled back to its highest point, it is at a height of 6.2 m. When it
svetlana [45]
The first is that you have the time to write a letter ✉️ and a lot more of the same, and the like are the same time as a result of the most popular connection and a half ago I was in a way ↕️ and a few other people are paying for new cars at the time of his death own or manage Hotel in a way ↕️ and the second half of the season ❄️ and a half ago I had a lot of people the first time I have to admit I have to say I am a little more time with my own personal information on how the hell out of the box house and a few other people and the second one of the most popular and a half ago I had to do it again in the first.
6 0
3 years ago
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen
Misha Larkins [42]

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
6 0
2 years ago
Other questions:
  • What happens to momentum when two objects collide
    13·1 answer
  • Assume you have measured your little metal sphere's diameter to be 2.500 ± 0.005 cm and its mass to be 63.00 ± 0.05 g.
    13·1 answer
  • What is the vertical displacement below any line?
    13·1 answer
  • An airplane changes its velocity uniformly from 150 m/s to 60 m/s in 15 s. Calculate:
    13·1 answer
  • Which characterstics do venus and earth share
    5·1 answer
  • Give one example of something you use or make at home that is an example of solubility.
    14·2 answers
  • The graph of an object's position over time is a horizontal line and y is not equal to 0. What must be true abou
    13·1 answer
  • A remote control car with a mass of 2.45kg generates a thrust force of 31.8N. The car experiences a frictional force due to a co
    6·1 answer
  • How do biological and environmental factors affect behavior?
    5·1 answer
  • 1. A drag racer accelerates from rest at 18ft/sec^2. How long does it take to acquire a speed of 60mph? What is required?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!