Mechanical waves travel the fastest in
solids and liquids because the
molecules are more closely packed together than gases, so energy is transferred
from one particle to another particle faster<span>.</span>
Answer:
0.74 N/cm
Explanation:
The following data were obtained from the question:
Mass (m) = 3 Kg
Extention (e) = 40 cm
Spring constant (K) =?
Next, we shall determine the force exerted on the spring.
This can be obtained as follow:
Mass (m) = 3 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = mg
F = 3 × 9.8
F = 29.4 N
Finally, we shall determine the spring constant of the spring. This can be obtained as follow:
Extention (e) = 40 cm
Force (F) = 29.4 N
Spring constant (K) =?
F = Ke
29.4 = K × 40
Divide both side by 40
K = 29.4 / 40
K = 0.74 N/cm
Therefore, the spring constant of the spring is 0.74 N/cm
There diffrent but can cause the same thing
Answer:
72.22 N
Explanation:
F = weight
m = mass of body
M = mass of earth
R = radius of earth
G = universal constant of gravitation
F_1= 650 N
F_1 = GMm/R^2
two earth radius above the surface of the earth:
F_2= GMm/(3R)^2= GMm/9R^2= F_1/9= 650/9
=72.22 N
To develop the problem, we require the values concerning the conservation of momentum, specifically as given for collisions.
By definition the conservation of momentum tells us that,
To find the speed at which the arrow impacts the apple we turn to the equation of time, in which,

The linear velocity of an object is given by

Replacing the equation of time we have to,

Velocity two is neglected since there is no velocity of said target before the collision, thus,

Clearing for m_2
