Answer:
26 lbf
Explanation:
The mass of the satellite is the same regardless of where it is.
The weight however, depends on the acceleration of gravity.
The universal gravitation equation:
g = G * M / d^2
Where
G: universal gravitation constant (6.67*10^-11 m^3/(kg*s))
M: mass of the body causing the gravitational field (mass of Earth = 6*10^24 kg)
d: distance to that body
15000 miles = 24140 km
The distance is to the center of Earth.
Earth radius = 6371 km
Then:
d = 24140 + 6371 = 30511 km
g = 6.67*10^-11 * 6*10^24 / 30511000^2 = 0.43 m/s^2
Then we calculate the weight:
w = m * a
w = 270 * 0.43 = 116 N
116 N is 26 lbf
Answer:
Para x=0:
Para x=30 cm:
Explanation
Podemos utilizar la ley de Fourier par determinar el flujo de calor:
(1)
Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.
Usando la ley de potencia para la derivda, tenemos:

Remplezando esta derivada en (1):
Para x=0:

Para x=30 cm:

Espero que te haya ayudado!
Plumbed stations are permanently connected to a source of potable water, whereas portable stations are self-contained gravity-fed units with their own flushing fluid that must be replaced after each use. ... Eyewash fluid must irrigate and flush both eyes simultaneously.
Hopefully this helped.
Answer:
d. low earth orbit (LEO)
Explanation:
This type of satellites form a constellation deployed as a series of “necklaces” in such a way that at any time, at least one satellite is visible by a receiver antenna, compensating the movement due to the earth rotation.
Opposite to that, a geostationary satellite is at an altitude that makes it like a fixed point over the Earth´s equator, rotating synchronously with the Earth, so it is always visible in a given area.