Answer:
a)
, b) 
Explanation:
a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

The capacity ratio is:



Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that
. The efectiveness of the heat exchanger is:


The real heat transfer rate is:




The exit temperature of the hot fluid is:




The log mean temperature difference is determined herein:



The heat transfer surface area is:



Length of a single pass counter flow heat exchanger is:



b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

If particleboard is used as wall sheathing, the grade mark with type M1 or M2 should be stamped on it.
<h3>What is particle board?</h3>
Particle board is notably used as floors underlayment or as a base for parquet floors, timber floors, or for carpets. For this purpose, the particle forums are dealt with with unique chemical compounds and resins to cause them to water-resistant or termite proof.
Waferboard, OSB, and composite plywood, while carried out as wall sheathing, offer a nail base for software of shingle siding.
Read more about the sheathing:
brainly.com/question/5029827
#SPJ1
Answer:
a) 8kW
b) $128
Explanation:
Given the coefficient of performance of the heat pump cycle to be 2.5
Energy delivered by the heat pump = 20kW
a) net power required to operate the heat pump = Energy delivered / coefficient of performance
Net power required = 20/2.5
= 8kW
b) Given the cost of electricity is $0.08 for 1kWhour
Since net power required to operate heat pump = 8kW
If the heat pump operate for 200hours, total power required for a month = 8kW×200hours = 1600kWhour
since 1kWh of electricity costs $0.08, cost of electricity used in a month when the pump operates for 200hour will be 1600kWh×$0.08 which is equivalent to $128
Answer:
See explanation below.
Explanation:
For this case the program needs to take the inputs as P,r and n and the output would be as A and printed on the system. The code is:
# Inputs
P = float(input("Enter the present value : "))
r = float(input("Enter your APR : "))
n = float(input("Enter the number of years : ") )
# Output
A = P*(1 +(r/100))**n
print("The future values is:", A)
And the result obtained is:
Enter the present value : 1000
Enter your APR : 0.95
Enter the number of years : 5
The future values is: 1048.4111145526908