Answer:
Final Temperature = 71 °C
Explanation:
In this case, the ideal gas equation is written as;
PV = mRT
Where;
P is pressure
V is volume
m is mass
R is gas constant
T is temperature
We will take the volume to be constant.
So, in the initial state, we have;
P1•V = m1•R•T1 - - - eq(1)
In the final state, we have;
P2•V = m2•R•T2 - - - - eq(2)
Combining eq (1) and eq(2),we have;
P1•m2•R•T2 = P2•m1•R•T1
Dividing both sides by R gives;
P1•m2•T2 = P2•m1•T1
Making T2 the subject gives;
T2 = (P2•m1•T1)/(P1•m2)
Now, we are given;
m1 = 2kg
m2 = ½*2 = 1kg
P1 = 4 atm
P2 = 2.2 atm
T1 = 40°C = 273 + 40 K = 313K
Plugging in this values into the T2 equation, we have;
T2 = (2.2 × 2 × 313)/(4 × 1)
T2 = 344 K
Converting to °C, we have;
T2 = 344 - 273 = 71 °C