Answer: 0.049 mol
Explanation:
1) Data:
n₁ = 0.250 mol
p₁ = 730 mmHg
p₂ = 1.15 atm
n₂ - n₁ = ?
2) Assumptions:
i) ideal gas equation: pV = nRT
ii) V and T constants.
3) Solution:
i) Since the temperature and the volume must be assumed constant, you can simplify the ideal gas equation into:
pV = nRT ⇒ p/n = RT/V ⇒ p/n = constant.
ii) Then p₁ / n₁ = p₂ / n₂
⇒ n₂ = p₂ n₁ / p₁
iii) n₂ = 1.15atm × 760 mmHg/atm × 0.250 mol / 730mmHg = 0.299 mol
iv) n₂ - n₁ = 0.299 mol - 0.250 mol = 0.049 mol
Answer:
a) according to Faraday's law
, b) creating a faster movement, placing more turns on coil
Explanation:
a) The voltage is induced in the coil by the relative movement between it and the magnet, therefore according to Faraday's law
E = - d (B A) / dt
In this case, the magnet is involved, so the value of the magnetic field varies with time, since the number of lines that pass through the loop changes with movement.
This voltage creates a current that charges the battery
b) There are several ways to increase the voltage
* creating a faster movement, can be done by the user
* placing more turns on the coil, must be done by the manufacturer
Answer:
<h2>480</h2>
Explanation:
<h2>R=120÷0.25</h2><h2>R=480 ohms </h2>
because the unit for resistance is in ohms
The maximum speed of the object under simple harmonic motion is 0.786 m/s.
The given parameters:
- Position of the particle, y = 0.5m sin(πt/2)
<h3>Wave equation for
simple harmonic motion;</h3>
y = A sin(ωt + Ф)
where;
- A is the amplitude = 0.5 m
- ω is the angular speed = π/2
The maximum speed of the object is calculated as follows;

Thus, the maximum speed of the object under simple harmonic motion is 0.786 m/s.
Learn more about simple harmonic motion here: brainly.com/question/17315536