The energy can be shown as:
Q = ms dT
Whereas, m is the mass of block
s is specific heat
dT is change in temperature.
Copper block having the lowest specific heat and thus having the higher change in temperature and therefore having the higher final temperature.
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
Answer:
You need to dilute 8 M HCl to 0.35 M to make 457 mL.
Explanation:
Use the equation M₁V₁=M₂V₂
Convert the mL to L : 20 mL= 0.02 L
8 M x 0.02 L = 0.35 M x V₂
V₂ = 0.4571429 L = 457 mL
It doesn't?
Heat transfers from hot objects to cold objects and for ice to melt it has to increase the temperature.
Answer:
Q = 60192 j
Explanation:
Given data:
Volume of water = 0.45 L
Initial temperature = 23°C
Final temperature = 55°C
Amount of heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55°C - 23°C
ΔT = 32°C
one L = 1000 g
0.45 × 1000 = 450 g
Specific heat capacity of water is 4.18 j/g°C
Q = m.c. ΔT
Q = 450 g. 4.18 j/g°C. 32°C
Q = 60192 j