Answer:
ω = 630.2663 = 630[rad/s]
Explanation:
Solution:
- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.
1rev(20 hole) -> 20(cycle)/rev
2006.2(cycle) -> f ?
f = 2006.2/20 = 100.31rev at second
- The relation between angular frequency and angular speed is given by:
ω = 2πf
ω = 2*3.14*100.31
ω = 630.2663 = 630[rad/s]
Not 100% sire but I think it'd be Yellow since we see red and green light together as Yellow
The correct answer for this question is this one: C) 2.5s. T<span>he period and frequency of a water wave if 4.0 complete waves pass a fixed point in 10 seconds is that 2.5 s
</span>
Here are the following choices:
<span>A) 0.25s
B) 0.40s
C) 2.5s
D) 4.0s</span>
Answer:
speed =wavelenght x frequency
v=4.5 x 10 to the -7 x 667=0.3 x 10 to the -4 m/s
speed= distance/time
time=distance/speed
t=4 x 10 to the 16/0.3 x 10 to the -4=13.33 x 10 to the 20 seconds
Explanation:
Answer:
The resistance of the bulb is 1000 ohms.
Explanation:
What is the resistance of a bulb that is connected to a 20 v source through which a current of 20 mA passes
We have,
Voltage of the bulb is 20 V and the current passes is 20 mA.
It is required to find the resistance of the bulb. The relation between resistance, current and voltage is given by using Ohm's law as :
V = IR
R is resistance

So, the resistance of the bulb is 1000 ohms.