Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Acceleration = (0.2 x g) = 1.96m/sec^2.
<span>Accelerating force on 1kg. = (ma) = 1.96N. </span>
<span>1kg. has a weight (normal force) of 9.8N. </span>
<span>Coefficient µ = 1.96/9.8 = 0.2 minimum. </span>
<span>Coefficient is a ratio, so holds true for any value of mass to find accelerating force acting. </span>
<span>e.g. 75kg = (75 x g) = 735N. </span>
<span>Accelerating force = (735 x 0.2) = 147N</span>
Answer:
PE=0.92414J and KE=0.28175J
Explanation:
Gravitational potential energy=mass*gravity*height
PE=mgh
Data,
M=0.046kg
H=2.05m
g=9.8m/s^2
PE=0.046kg * 9.8m/s^2 * 2.05m
PE =0.92414J
KE=1/2mv^2
M=0.046kg
V=3.5m/s
KE=[(0.046kg)*(3.5m/s)^2]\2
KE=0.28175J
Sunlight emits more energy than artificial light. Sunlight is better and healthier than most artificial lights and helps plants to grow more.