Answer:
The force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Explanation:
F₂₁ = 
Where;
F₂₁ is the vector force on q₁ due to q₂
K is the coulomb's constant = 8.99 X 10⁹ Nm²/C²
r₂₁ is the unit vector
|r₂₁| is the magnitude of the unit vector
|q₁| is the absolute charge on point charge one
|q₂| is the absolute charge on point charge two
r₂₁ = [(9-5)i +(7.4-(-4))j] = (4i + 11.5j)
|r₂₁| = 
(|r₂₁|)² = 148.25

= 0.050938(0.19107i + 0.54933j) N
= (0.00973i + 0.02798j) N
Therefore, the force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Answer:
299,792,458 m/s = speed of light
Explanation:
Answer:
copying another writer's work with no attempt to acknowledge that the material was found in external source is considered as a direct plagiarism.
In order to overcome an object’s inertia (resistance to change), it must be acted upon by an unbalanced force, so the answer to the problem is letter C.
Answer:attract each other
Explanation:
When two-sphere, one with a negative charge and another neutral is brought close together but do not touch then they try to attract each other.
This because of the polarization of the neutral sphere as it is placed in the vicinity of a negatively charged sphere. The negatively charged sphere will induce the positive charge in the neutral sphere and they will attract each other according to Columb law.