With acceleration

and initial velocity

the velocity at time <em>t</em> (b) is given by




We can get the position at time <em>t</em> (a) by integrating the velocity:

The particle starts at the origin, so
.



Get the coordinates at <em>t</em> = 8.00 s by evaluating
at this time:


so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).
Get the speed at <em>t</em> = 8.00 s by evaluating
at the same time:


This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

Answer:
Explanation:
a ) The earth rotates by 2π radian in 24 x 60 x 60 s
so angular speed ( w ) = 2π / (24 x 60 x 60) = 7.268 x 10⁻⁵ rad / s
b ) Linear speed of city of Arlington ( v ) = w r = w R Cosλ where R is radius of the earth and λ is latitude .
v = 7.268 x 10⁻⁵ x 6.371 x 10⁶ cos 32.7357
389.5 m /s
acceleration = w² r = w² R Cos 32.7357
= (7.268 x 10⁻⁵ )² x 6.371 x 10⁶ x cos 32.7357
=283.08 x 10⁻⁴ m/s²
c) velocity ratio =
w r /w R =
R cos 32.73/ R
= Cos 32.73
= 0.84 .
Answer:
sound water because sound is the most important electronic wave for water
The question seems to be what is an equilibrant force.
The answer is "an added force that produces equilibrium.
Here you have more insight:
<span>an object that has no net force acting on it? This object indeed is in equilibrium but the object is not the equilibran force.
the reaction force in an action-reaction pair of forces?
the reaction force is not an equilibrant force. The reaction force exists always but equilibrium is only possible if the net force is cero.
an added force that produces equilibrium? this is the right answer.</span>
Newtons first law states an object will only move of something acts on it. his seccond law states that an object will accelerate if an outside force acts on it.