Find the volume of the bottom and top separately and then add them.
Cylinder volume is the area of the bottom times the height
(22/7)(5^2)•175=13750 ft^3
The volume of a sphere is
V=(4/3)(22/7)r^3
where r is the radius. Here that's also 5 since it fits on the cylinder.
Also we only want half the sphere so use
V=(2/3)(22/7)•5^3=261.9 ft^3
Which we round upto 262.
Now add the parts together
13750+262=14,012 ft^3
Answer:
100 Joule
Explanation:
Amount of heat in agiven body is given by Q = m•C•ΔT
where m is the mass of the body
c is the specific heat capacity of body. It is the amount of heat stored in 1 unit weight of body which raises raises the temperature of body by 1 unit of temperature.
ΔT is the change in the temperature of body
___________________________________________
coming back to problem
m = 5g
C = 2J/gC
since, it is given that temperature of body increases by 10 degrees, thus
ΔT = 10 degrees
Using the formula for heat as given
Q = m•C•ΔT
Q = 5* 2 * 10 Joule= 100 Joule
Thus, 100 joule heat must be added to a 5g substance with a specific heat of 2 J/gC to raise its temperature go up by 10 degrees.
Answer:
The thermal energy is the sum of the potential energy and kinetic energy that is known to make all the particle in an object it is the energy that is responsible for its temperature heat is the flow of thermal energy thermal energy is the result of something that has some internal temperature which can be measured
Answer:
The work done on the suitcase is, W = 1691 J
Explanation:
Given data,
The force on the suitcase is, F = 89 N
The distance Russell dragged the suitcase, S = 19 m
The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction
The work done on the suitcase by Russell is given by the formula
W = F · S
Substituting the given values,
W = 89 N x 19 m
W = 1691 J
Hence, the work done on the suitcase is, W = 1691 J
Answer:
–735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.
Explanation:
The following data were obtained from the question:
Mass (m) of car = 782.10 kg
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Force (F) =?
Next, we shall determine the acceleration of the car. This can be obtained as follow:
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Acceleration (a) =?
a = (v – u) / t
a = (3.61 – 7.60) / 4.23
a = –3.99 / 4.23
a = –0.94 m/s²
Finally, we shall determine the force experienced by the car as shown below:
Mass (m) of car = 782.10 kg
Acceleration (a) = –0.94 m/s²
Force (F) =?
F = ma
F = 782.10 × –0.94
F = –735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.