Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
Hi there! When a chemical Reaction happens, the tell tale signs are as listed:
~The chemical produces bubbles
~ The Chemical emits an odor
~ The liquid forms a solid(Precipitate)
~ There is a change of color
~ And last but not least a change in temperature!
Hope this can help! Good luck!
The solution for this problem is:torque1 = torque2 = FL / 2
Torque 3 = Torque 4 = FL / 2 * sin (theta)
Torque 5 = 2 FL
Torque 6 = 0
So the order of the torques from smallest to largest is torque 6, (torque 3 and 4), (torque 1 and 2), torque 5.
Remember or just take note that sin (theta) < 1 is why 3 and 4 are less than 1 and 2.