Increases exponentially is your correct answer
Given:
The mass of the halfback is m = 107 kg
The speed of the halfback is v = 8 m/s
To find the momentum.
Explanation:
The momentum of the halfback is

Thus, the momentum of the halfback is 856 kg m/s
Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
BCA for sure, b the lines are showing more movement
Answer:
-10m/s
Explanation:
only the magnitude of the velocity will change due to the change in direction of the car.