Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car, 
Mass of the truck, 
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :

So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
Answer:
0.2885 m/s²
Explanation:
The formula for centripetal acceleration is given as;

Given that;
speed = v = 1.5m/s
radius = r = 7.8

Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide
C. The sun is the most massive object in our solar system.
It also has a stronger gravitational pull.
Answer:
1) as far as I remember
Let's take 20 as vf (final velocity) and 11 as (initial velocity) and 4 as time
So we would use this formula a=vf-vi/t
So 20-11/4
Asnwer 2.25