The force that peter applies to the object of distance 40m is 75N.
<h3>HOW TO CALCULATE FORCE</h3>
The force applied to an object can be calculated by dividing the work done on the object by the distance moved. That is;
Force = Work done ÷ distance
According to this question, the work done is 3000 joules while the distance moved is 40m. The force is calculated as follows:
Force = 3000J ÷ 40m
Force = 75N
Therefore, the force that peter applies to the object of distance 40m is 75N.
Learn more about force at: brainly.com/question/26115859
Answer:
5.634 N rightwards
Explanation:
qo = - 3 x 10^-7 C
q1 = - 9 x 10^-6 C
q2 = 10 x 10^-6 C
r1 = 7 cm = 0.07 m
r2 = 20 cm = 0.2 m
The force on test charge due to q1 is F1 which is acting towards right
According to the Coulomb's law

F1 = (9 x 10^9 x 9 x 10^-6 x 3 x 10^-7) / (0.07 x 0.07)
F1 = 4.959 N rightwards
The force on test charge due to q2 is F1 which is acting towards right
According to the Coulomb's law

F2 = (9 x 10^9 x 10 x 10^-6 x 3 x 10^-7) / (0.2 x 0.2)
F2 = 0.675 N rightwards
Net force on the test charge
F = F1 + F2 = 4.959 + 0.675 = 5.634 N rightwards
Answer and explanation;
In 1670 Gabriel Mouton, Vicar of St. Paul’s Church and an astronomer proposed the swing length of a pendulum with a frequency of one beat per second as the unit of length.
In 1791 the Commission of the French Academy of Sciences proposed the name meter to the unit of length. It would equal one tens-millionth of the distance from the North Pole to the equator along the meridian through Paris.It is realistically represented by the distance between two marks on an iron bar kept in Paris.
In 1889 the 1st General Conference on Weights and Measures define the meter as the distance between two lines on a standard bar that made of an alloy of 90%platinum with 10%iridium.
In 1960 the meter was redefined as 1650763.73 wavelengths of orange-red light, in a vacuum, produced by burning the element krypton (Kr-86).
In 1984 the Geneva Conference on Weights and Measures has defined the meter as the distance light travels, in a vacuum, in 1299792458⁄ seconds with time measured by a cesium-133 atomic clock which emits pulses of radiation at very rapid, regular intervals.