Answer:

<h3>Saponification is a process that involves conversion of fat, oil or lipid into soap and alcohol by the action of heat in the presence of aqueous alkali. Soaps are salts of fatty acids and fatty acids are monocarboxylic acids that have long carbon chains e.g. sodium palmitate.</h3>
The asthenosphere is directly below the lithosphere so the answer to your question is the asthenosphere, because the outer core is towards the center of Earth.
Explanation:
As density is defined as the mass of a substance divided by its volume.
Mathematically, Density = 
It is given that mass is 50 g and density is 0.934
.
Hence, calculate the volume of methyl acetate as follows.
Density = 
0.934
= 
Volume = 
or, =
(as 1
= 1 mL)
Thus, we can conclude that the volume of methyl acetate the student should pour out is
.
Answer
solubility product = 3.18x 10^-7
Explanation:
We were given the pressure in torr then we need to convert to atm for consistency, ten we have
21torr/760= 0.0276315789 atm
21 Torr = .0276315789 atm
P = i M S T
M = P / iRT
Where p is osmotic pressure
T= temperature= 25C+ 273= 298K
for XY vanthoff factor i = 2
S = 0.0821 L-atm / mol K
M = .0276315789 atm / (2)(0.0821 L atm / K mole)(298 K)
M = 0.000564698046 mol/liters
solubility= 0.000564698046 mol/liters
Ksp = [X+][Y-]
Ksp = X^2
Ksp = [Sr^+2] * [SO4^-2]
Ksp = X^2
Ksp = (0.000564698046)^2
Ksp = 3.18883883 × 10-7
Ksp = 3.18x 10^-7
solubility product = 3.18x 10^-7
Therefore, the solubility product of this salt at 25 ∘C∘C is 3.18x 10^-7
Explanation:
<u>Polar covalent bonding is the type of the chemical bond in which the pair of the electrons is unequally shared between the two atoms.</u> As a result, the atom with higher value of electronegativity acquires a slightly negative charge and the atom with lower value of electronegativity acquires a slightly positive charge.
In the molecule of
, the bond which is closest to ionic end of bond spectrum is <u>N-H bond</u> because the nitrogen atom is more electronegative than hydrogen and is ionic in nature.
In the molecule of
, the bond which is closest to ionic end of bond spectrum is <u>no one</u> because there is not much difference between carbon and hydrogen for the bond to be said as ionic.
In the molecule of
, the bond which is closest to ionic end of bond spectrum is <u>O-H bond</u> because the oxygen atom is more electronegative than hydrogen and is ionic in nature.