Answer:
Explanation:
Given parameters:
Initial temperature T₁ = 25.2°C = 25.2 + 273 = 298.2K
Initial pressure = P₁ = 0.6atm
Final temperature = 72.4°C = 72.4 + 273 = 345.4K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use an adaption of the combined gas law where the volume gas is fixed. This simplification results into:

where P and T are temperatures, 1 and 2 are initial and final temperatures.
Input the parameters and solve;
P₂ = 0.7atm
Option C, mass would be same. Only the gravitational pull will be different
Answer:
The oxidation state of the carbon is +4.
Explanation:
Calcium is in group 2 of the periodic table, therefore, its oxidation state is +2.
The oxidation state of the oxygen is -2.
As the compound is neutral, the sum of the oxidation states of all atoms must be 0.
Oxidation State Ca + Oxidation State C + (Oxidation State O)×3 = 0
+2 + x + (-2)×3 = 0
2 + x - 6 = 0
x = 6 -2
x = 4
Hence, the oxidation state of the carbon is +4.
<span>1. Tap water has a small concentration of H+ & OH- ions as well as water molecules, hence there would be permanent dipole-permanent dipole (p.d.-p.d.) forces of attraction between the water molecules (aka H-bonds) as well as ionic bonds between the H+ & OH- ions.
2. Distilled water does not have H+ & OH- ions, hence only H-bonds exist between the water molecules.
3. There are covalent bonds between the individual sugar molecules.
4. There are ionic bonds between the Na+ & Cl- ions in NaCl.
5. There are p.d.-p.d. forces of attraction between the Na+ ions and the O2- partial ions of the water molecules as well as between the Cl- ions and the H+ partial ions of the water molecules. There are also H-bonds between the individual water molecules and ionic bonds between the Na+ & Cl- ions (although these are in much lower abundance than in unsolvated solid NaCl).
6. There are i.d.-i.d. as well as p.d.-p.d. forces of attraction between the sugar molecules and the water molecules. There are also H-bonds between the individual water molecules and covalent bonds within the sugar molecules.</span>
As you know ethanol is a an alcohol and alcohol is a hydrocarbon. Alcohol is made up of a carbon chain which Is always non polar and a OH group which is polar. According to the solubility rule like substances dissolves like substance. Using ethanol chemical formula. Ethanol has a 2 carbon chain and a OH group. water is polar so it will be attracted to the OH group. Carbon chain on the other hand is nonpolar so it will be repelled from the water.
Therefore the Solubility of alcohols is determined by the stronger of the two forces. The strength of the attraction of the OH group, and the amount of water they dissolve in.