In subsea oil and natural gas production, hydrocarbon fluids may leave the reservoir with a temperature of 70°C and flow in subs
ea surrounding of S°C. As a result of the temperature difference between the reservoir and the subsea surrounding, the knowledge of heat transfer is critical to prevent gas hydrate and wax deposition blockages. Consider a subsea pipeline with inner diameter of O.S m and wall thickness of 8 mm is used for transporting liquid hydrocarbon at an average temperature of 70°C, and the average convection heat transfer coefficient on the inner pipeline surface is estimated to be 2SO W/m2.K. The subsea surrounding has a temperature of soc and the average convection heat transfer coefficient on the outer pipeline surface is estimated to be ISO W /m2 .K. If the pipeline is made of material with thermal conductivity of 60 W/m.K, by using the heat conduction equation (a) obtain the temperature variation in the pipeline wall, (b) determine the inner surface temperature of the pipeline wall, (c) obtain the mathematical expression for the rate of heat loss from the liquid hydrocarbon in the pipeline, and (d) determine the heat flux through the outer pipeline surface.
In subsea oil and natural gas production, hydrocarbon fluids may leave the reservoir with a temperature of 70°C and flow in subsea surrounding of S°C. As a result of the temperature difference between the reservoir and the subsea surrounding, the knowledge of heat transfer is critical to prevent gas hydrate and wax deposition blockages. Consider a subsea pipeline with inner diameter of O.S m and wall thickness of 8 mm is used for transporting liquid hydrocarbon at an average temperature of 70°C, and the average convection heat transfer coefficient on the inner pipeline surface is estimated to be 2SO W/m2.K. The subsea surrounding has a temperature of soc and the average convection heat transfer coefficient on the outer pipeline surface is estimated to be ISO W /m2 .K. If the pipeline is made of material with thermal conductivity of 60 W/m.K, by using the heat conduction equation (a) obtain the temperature variation in the pipeline wall, (b) determine the inner surface temperature of the pipeline wall, (c) obtain the mathematical expression for the rate of heat loss from the liquid hydrocarbon in the pipeline, and (d) determine the heat flux through the outer pipeline surface."
An operational amplifier usually has a high open loop gain of around 10^5 which allows a wide range get of feed back levels in order to achieve the desired performance so therefore a low open loop gain reduces the range feed back level thereby reducing the performance which can cause errors in the output voltage.
Explanation:adrive with visual acutity of 20/30 can just decipher asing adistance 20ft from asing determine the maximum destance from the sing which drivers with the flowing visual acuities will able to see the same sing 20/15 20/50