Answer:
Er = 231.76 V/m, 27.23° to the left of E1
Explanation:
To find the resultant electric field, you can use the component method. Where you add the respective x-component and y-component of each vector:
E1:

E2:
Keep in mind that the x component of electric field E2 is directed to the left.

∑x: 
∑y: 
The magnitud of the resulting electric field can be found using pythagorean theorem. For the direction, we will use trigonometry.
or 27.23° to the left of E1.
The rock strike the water with the speed of 15.78 m/sec.
The speed by which rock hit the water is calculated by the formula
v=
v=
v=15.78 m/sec
Hence, the rock strike the water with the speed of 15.78 m/sec.
Answer:
brainly getting too strict smh...
Explanation:
Answer:
33.33j+6.67i km/hr
Explanation:
From the law of conservation of momentum,
Applying,
mu+m'u' = V(m+m')............... Equation 1
Where m = mass of the truck, m' = mass of the car, u = initial velocity of the truck, u' = initial velocity of the car, V = Final velocity.
Note: let j represent the north, and i represent the east
From the question,
Given: m = 1500 kg, u = 60j, m' = 1200 kg, u' = 15i
Substitute these values into equation 1
1500*60j+1200*15i = V(1500+1200)
90000j+18000i = 2700V
V = (90000j+18000i)/2700
V = 33.33j+6.67i km/hr