Answer:
The amplitude of the absorbed mass can be found
for ka:

now
![w^2=\frac{K_{a} }{m_{a} } \\m_{a} =\frac{K_{a} }{w^2} =\frac{125000}{[6000*2\pi /60]^2} =0.317kg](https://tex.z-dn.net/?f=w%5E2%3D%5Cfrac%7BK_%7Ba%7D%20%7D%7Bm_%7Ba%7D%20%7D%20%5C%5Cm_%7Ba%7D%20%3D%5Cfrac%7BK_%7Ba%7D%20%7D%7Bw%5E2%7D%20%3D%5Cfrac%7B125000%7D%7B%5B6000%2A2%5Cpi%20%2F60%5D%5E2%7D%20%3D0.317kg)
Answer:
metals, composite, ceramics and polymers.
Explanation:
The four categories of engineering materials used in manufacturing are metals, composite, ceramics and polymers.
i) Metals: Metals are solids made up of atoms held by matrix of electrons. They are good conductors of heat and electricity, ductile and strong.
ii) Composite: This is a combination of two or more materials. They have high strength to weight ratio, stiff, low conductivity. E.g are wood, concrete.
iii) Ceramics: They are inorganic, non-metallic crystalline compounds with high hardness and strength as well as poor conductors of electricity and heat.
iv) Polymers: They have low weight and are poor conductors of electricity and heat
Answer:
Explanation: Here it is: 67 Hope that helps! :)
Answer:
W= 8120 KJ
Explanation:
Given that
Process is isothermal ,it means that temperature of the gas will remain constant.
T₁=T₂ = 400 K
The change in the entropy given ΔS = 20.3 KJ/K
Lets take heat transfer is Q ,then entropy change can be written as

Now by putting the values

Q= 20.3 x 400 KJ
Q= 8120 KJ
The heat transfer ,Q= 8120 KJ
From first law of thermodynamics
Q = ΔU + W
ΔU =Change in the internal energy ,W=Work
Q=Heat transfer
For ideal gas ΔU = m Cv ΔT]
At constant temperature process ,ΔT= 0
That is why ΔU = 0
Q = ΔU + W
Q = 0+ W
Q=W= 8120 KJ
Work ,W= 8120 KJ
i believe the correct answer is c but i’m sorry if i’m not correct