Answer:
The correct answer is 4.16 grams.
Explanation:
Based on the given information, the concentration of KCl solution is 16 % m/v, which means that 100 ml of the solution will contain 16 grams of KCl.
The molarity of the solution can be determined by using the formula,
M = weight/molecular mass × 1000/Volume
The molecular mass of KCl is 74.6 grams per mole.
M = 16/74.6 × 1000/100
M = 16/74.6
M = 2.14 M
Now the weight of KCl present in the solution of 26 ml will be,
2.14 = Wt./74.6 × 1000 /26
Wt. = 4.16 grams
Answer:
N2(g) + 3H2(g) → 2 NH3(g)
Explanation:
N2(g) + H2(g) → NH3(g)
We start equaling the number of N atoms in both sides multiplying by 2 the NH3.
N2(g) + H2(g) → 2 NH3(g)
So we equals the H atoms (there are six in products sites)
N2(g) + 3 H2(g) → 2 NH3(g)
Answer:
Density of the substance is 0.7
Explanation:
4.2/6 = 0.7
Answer: the boiling point is = 137.325°C
Explanation:
From the formula: ∆Tb= Kb*m
From the question, Kb= 0.95, m= 27.5, T1= 111.2°C
Substitute into ∆Tb= Kb*m
∆Tb= 0.95*27.5= 26.125
∆Tb= T2-T1
Hence
T2- 111.2=26.125
T2= 26.125+ 111.2= 137.325°C
Answer:
The answer to your question is:
1.- CO
2.- 0.414 moles of CO2
Explanation:
Data
2CO + O2 ⇒ 2CO2
CO = 0.414 moles
O2 = 0.418
Process
theoretical ratio CO/O2 = 2/1 = 1
experimental ratio CO/O2 = 0.414/0.418 = 0.99
Then the limiting reactant is CO
2.-
2 moles of CO --------------- 2 moles of CO2
0.414 moles of CO --------- x
x = (0.414 x 2) / 2
x = 0.414 moles of CO2