1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
3 years ago
10

A body is traveling at 5.0 m/s along the positive direction of an x axis; no net force acts on the body. An internal explosion s

eparates the body into two parts, each of mass 4 kg, and increases the total kinetic energy by 100 J. The forward part continues to move in the original direction of motion. (a) What is the speed of the rear part? (b) What is the speed of the forward part?
Physics
1 answer:
loris [4]3 years ago
8 0

To solve this problem it is necessary to apply the concepts related to the conservation of momentum and conservation of kinetic energy.

By definition kinetic energy is defined as

KE = \frac{1}{2} mv^2

Where,

m = Mass

v = Velocity

On the other hand we have the conservation of the moment, which for this case would be defined as

m*V_i = m_1V_1+m_2V_2

Here,

m = Total mass (8Kg at this case)

m_1=m_2 = Mass each part

V_i = Initial velocity

V_2 = Final velocity particle 2

V_1 = Final velocity particle 1

The initial kinetic energy would be given by,

KE_i=\frac{1}{2}mv^2

KE_i = \frac{1}{2}8*5^2

KE_i = 100J

In the end the energy increased 100J, that is,

KE_f = KE_i KE_{increased}

KE_f = 100+100 = 200J

By conservation of the moment then,

m*V_i = m_1V_1+m_2V_2

Replacing we have,

(8)*5 = 4*V_1+4*V_2

40 = 4(V_1+V_2)

V_1+V_2 = 10

V_2 = 10-V_1(1)

In the final point the cinematic energy of EACH particle would be given by

KE_f = \frac{1}{2}mv^2

KE_f = \frac{1}{2}4*(V_1^2+V_2^2)

200J=\frac{1}{2}4*(V_1^2+V_2^2)(2)

So we have a system of 2x2 equations

V_2 = 10-V_1

200J=\frac{1}{2}4*(V_1^2+V_2^2)

Replacing (1) in (2) and solving we have to,

200J=\frac{1}{2}4*(V_1^2+(10-V_1)^2)

PART A: V_1 = 10m/s

Then replacing in (1) we have that

PART B: V_2 = 0m/s

You might be interested in
A train leaves the train station at noon and travels at a constant speed of vt = 50 mi/hr on a straight track. 2 hr later, a car
asambeis [7]

Answer:

350 miles

Explanation:

When the car starts 2 hours later, the train would have a head start of

50 * 2 = 100 miles

The speed of the car relative to the train is

70 - 50 = 20 mi/hr

For the car to catch up with the train, it must cover the 100 miles difference at the rate of 20mi/hr. So the time it would need to cover this difference is

100 / 20 = 5 hours

After 5 hours, the car would have traveled a distance of

5 * 70 = 350 miles which is also the distance from the station to where the car catches up

6 0
3 years ago
A student is bicycling north along Main Street to school. Another student is timing the bicycling student in order to determine
MatroZZZ [7]

The average velocity is -4.17 m/s

Explanation:

The average velocity of a body is given by:

v=\frac{d}{t}

where

d is the displacement of the body

t is the time elapsed

For the student in this problem, we have:

Initial position: x_i = 450 m

Final position: x_f = 200 m

So the displacement is

d=x_f -x_i = 200 - 450 = -250 m

The time elapsed is

t = 60 s

Therefore, the average velocity is

v=\frac{-250}{60}=-4.17 m/s

Where the negative sign means the student is moving towards the origin.

Learn more about average speed and velocity:

brainly.com/question/8893949

brainly.com/question/5063905

#LearnwithBrainly

8 0
3 years ago
All fires require oxygen () There is no oxygen in that room (T) .
Marina CMI [18]

The sentences are invalid and unsound.

<h3><u>Explanation</u>:</h3>

The fire is defined as the vigorous oxidation of a substance. Now oxidation can occur in presence of any oxidising agent. Like magnesium in presence of nitrogen in high temperature with a dazzling brownish flame to produce magnesium nitride. So fire can be produced in absence of oxygen.

Oxygen is present everywhere in world. So production of a whole room without oxygen is very tough to produce and costly process. So its very unsound.

4 0
3 years ago
Rod AB has a diameter of 200mm and rod BC has a diameter of 150mm. Find the required temperature increase to close the gap at C.
Leni [432]

Answer:

T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}

Explanation:

The given data :-

  • Diameter of rod AB ( d₁ ) = 200 mm.
  • Diameter of rod BC ( d₂ ) = 150 mm.
  • The linear co-efficient of thermal expansion of copper ( ∝ ) = 1.6 × 10⁻⁶ /°C
  • The young's modulus of elasticity of copper ( E ) = 120 GPa = 120 × 10³ MPa.
  • Consider the required temperature increase to close the gap at C = T °C
  • Consider the change in length of the rod = бL

Solution :-

\begin{aligned}\sum H& =0\\-R_A+R_C&=0\\R_A&=R_C\\R_A&=R\\R_C&=R\\R_{A}&=\text{reaction\:force\:at\:A}\\R_{C}&=\text{reaction\:force\:at\:C}\\\sigma_{AB}&=\text{axial\:stress\:at\:A}\\\sigma_{BC}&=\text{axial\:stress\:at\:B}\\\sigma_{AB}&=\frac{R}{A_{A}}\\&=\frac{R_{A}}{A_{A}}\\\sigma_{BC}&=\frac{R_{B}}{A_{B}}\\&=\frac{R}{A_{B}}\\\frac{\sigma_{AB}}{\sigma_{BC}}&=\frac{A_{B}}{A_{B}}\\&=\frac{\frac{\pi}{4}\cdot 150^{2}}{\frac{\pi}{4}\cdot 200^{2}}\\&=\frac{9}{16}\end{aligned}

\begin{aligned}\delta L&= (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\0& = (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\&=\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{AB}+\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{BC}\\&=2\:\alpha\:T\:L-\frac{L}{E}(\sigma_{AB}+\sigma_{BC})\\T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}\end{aligned}

5 0
3 years ago
Suppose that you are holding a pencil balanced on its point. If you release the pencil and it begins to fall, what will be the a
Naily [24]

Answer:

The angular acceleration of the pencil<em> α  = 17 rad·s⁻²</em>

Explanation:

Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:

    τ = I α                              (1)

    W r = I α                          (2)

The weight is that the pencil has is,

   sin 10 = r / (L/2)

   r = L/2(sin(10))

 

The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:

    I = 1/3 M L²

Thus,

   mg(L / 2)sin(10) = (1/3 m L²)(α) 

   α(f) = 3/2(g) / Lsin(10)

   α  = 3/2(9.8) / 0.150sin(10)

  <em> α  = 17 rad·s⁻²</em>

Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>

3 0
3 years ago
Other questions:
  • you cover 10 meters in a time of 1 second .Is your speed the same if you cover 20 meters in 2 seconds?
    10·1 answer
  • (HELP ASAP)
    10·2 answers
  • An object moves in simple harmonic motion described by the equation d equals one fifth sine 2 t where t is measured in seconds a
    9·1 answer
  • Which is the most accurate description of the plasma state of matter? A. It has a fixed volume. B. Its shape is not fixed. C. It
    12·1 answer
  • Many physical quantities are connected by inverse square laws, that is, by power functions of the form f(x)=kx^(-2). In particul
    11·1 answer
  • 3. There are twice as many people in the household, but your income has also doubled. Is your new
    11·2 answers
  • baseball player hits a line drive estimated to have traveled 145 meters the ball leaves the bat with a horizontal velocity of 40
    13·1 answer
  • Which best illustrates the relationships between a producer and a consumer
    6·1 answer
  • Use the worked example above to help you solve this problem. The half-life of the radioactive nucleus _(88)^(226)text(Ra) is 1.6
    14·1 answer
  • A cyclist bikes in a straight line at an average velocity of 22 miles/hour east and I’m finishing a 100 mile race how much time
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!