Answer:
τ = 132.773 lb/in² = 132.773 psi
Explanation:
b = 12 in
F = 60 lb
D = 3.90 in (outer diameter) ⇒ R = D/2 = 3.90 in/2 = 1.95 in
d = 3.65 in (inner diameter) ⇒ r = d/2 = 3.65 in/2 = 1.825 in
We can see the pic shown in order to understand the question.
Then we get
Mt = b*F*Sin 30°
⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in
Now we find ωt as follows
ωt = π*(R⁴ - r⁴)/(2R)
⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)
⇒ ωt = 2.7114 in³
then the principal stresses in the pipe at point A is
τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)
⇒ τ = 132.773 lb/in² = 132.773 psi
Refraction refers to C. the bending of light rays when they pass from one medium into another
Explanation:
Refraction is a phenomenon typical of wave. Refraction occurs when a wave travels through the boundary between two different mediums. When this occurs, the wave changes speed, wavelength and direction (but the frequency remains the same).
In particular, the direction of the refracted ray is determined by Snell's Law:

where
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence, which is the angle between the direction of the incident wave and the normal to the boundary
is the angle of refraction, which is the angle between the direction of the refracted wave and the normal to the boundary
Therefore, the correct description of refraction is
C. the bending of light rays when they pass from one medium into another
Learn more about refraction:
brainly.com/question/3183125
brainly.com/question/12370040
#LearnwithBrainly

where:
F - force
m - mass
a - acceleration
We transform this formula to get a:

Balance:
a book resting on a table
a car driving at 10 miles per hour in constant velocity
a cat sitting on a chair
a bulb that attach to the ceiling
your grandma sleeping on a bed
Unbalance:
your brother sprinting across the kitchen
a ball rolling at 5 m/s^2
your mom trying to run at 2 m/s^2 to spank you
you dropping your coffee mug on a floor
a cat jumping out of your bed
a tear from your eye falling through the floor
Hope this helps
Answer:+1.25 m/s
Explanation:
Given
mass of ice skater M=70 kg
mass of ball m=10 kg
the initial velocity of the ball 
Conserving linear momentum
![M\times0+m\timesu_1=(M+m)v\quad \quad [v=\text{combined velocity of skater and ball}]](https://tex.z-dn.net/?f=M%5Ctimes0%2Bm%5Ctimesu_1%3D%28M%2Bm%29v%5Cquad%20%5Cquad%20%5Bv%3D%5Ctext%7Bcombined%20velocity%20of%20skater%20and%20ball%7D%5D)

Therefore the velocity of the person holding the ball is 1.25 m/s
This collision represents the perfectly inelastic collision where particles stick together after the collision.