Answer:
2 hydrogen and 1 oxygen
Explanation:
H2O
Hydrogen has the coefficient so you multiply 1 by 2 and it equals 2
Oxygen does not have any sub or coe so its automatically 1
Explanation:
1) Based on the octet rule, iodine form an <u>I</u>⁻ ion.
Therefore,
Option E is correct ✔
2) The electronic configuration of the sulfide ion (S²⁻) is :
₁₆S = 1s² 2s² 2p⁶ 3s² 3p⁴ or [Ne] 3s² 3p⁴
₁₈S²⁻ = 1s² 2s² 2p⁶ 3s² 3p⁶ or [Ne] 3s² 3p⁶
Therefore,
Option E is correct ✔
3) valence shell electron of
Halogens = 7
Alkali metal = 1
Alkaline earth metal = 2
Therefore,
Option D is correct ✔
4) Group 2 element lose two electron in order to achieve Noble gas configuration.
And here Group 2 element is Sr
Therefore,
Option B is correct ✔
5) Group 13 element lose three electron in order to achieve Noble gas configuration.
And here Group 13 element is Al
Therefore,
Option B is correct ✔
6) For a given arrangements of ions, the lattice energy increases as ionic radius <u>decreases</u> and as ionic charge <u>increases</u>.
Therefore,
Option A is correct ✔
1. B
2. H
3. G
4. I
5. D
6. C
7. A
8. F
9. E
I am not sure weather it is correct but I wrote what I know
D. Protons, Atomic number is the number of protons in an atom.
By convention, the symbol Z is assigned to the number of protons in the nucleus, or simply, the atomic number of an element. This is actually used when you want to determine the effective nuclear charge of a specific electron of an element. The equation is:
Z* = Z - S
where
Z* is the effective nuclear charge
Z is the atomic number
S is the number of electrons between the electron in question and the nucleus
There is due to a phenomenon called the shielding effect. This effect states that the farther the electron is from the nucleus, the lesser is its pull of force to the nucleus. That is the reason why the valence electrons (outermost electrons) are the ones always involved in chemicals reactions. Because they are not that strongly bonded to the nucleus of an atom.