Answer: 401.4g
Explanation:
The mass can be calculated by using the following mathematical expression for Moles ,which is:
Moles = Mass / Molar Mass
From the question given, Moles = 1.72, Molar mass of BaSO4 = 233.38g/mol, Mass =?
Making 'Mass' the subject of formula, we get:
Mass = Molar mass x Moles
= 233.38 x 1.72 = 401.4g
Temperature is very important if ice gets too hot it turns to water, if it gets even hotter it turns to gas.
but if it’s too cold water can turn into ice
Temperature determines what state of matter something is
Answer:
744.9 mmHg ≅ 745 mmHg
Explanation:
The base to solve this, is the Ideal Gases Law. The mentioned formula is:
P . V = n . R . T
To compare two situations, we can propose:
For the first situation P₁ . V₁ = n₁. R . T₁
For the second situation P₂ . V₂ = n₂ . R . T₂
As the sample has the same moles and R is a constant value, we can avoid them so: (P₁ . V₁) / T₁ = (P₂ . V₂) / T₂
We need to make Tº unit conversion:
25ºC + 273 = 298K
We replace data → (370 mL . 1020 mmHg) / 298K = (P . 510 mL) / 300 K
(377400 mL.mmHg / 298K) . 300 K = P . 510 mL
379932.8 mL . mmHg = P . 510 mL
(379932.8 mL . mmHg) / 510 mL = P → 744.9 mmHg
Answer:
Ok:
Explanation:
So, you can use the Henderson-Hasselbalch equation for this:
pH = pKa + log(
) where A- is the conjugate base of the acid. In other words, A- is the deprotonated form and HA is the protonated.
We can solve that
1 = log(
) and so 10 =
or 10HA = A-. For every 1 protonated form of adenosine (HA), there are 10 A-. So, the percent in the protonated form will be 1(1+10) or 1/11 which is close to 9 percent.