Okay, so you need to start by finding the molar mass (grams in one mole) of nitrogen monoxide (NO).
N=14g
O=16g
So we know that NO has a molar mass of 30 grams, then just divide your given mass of 22.5 grams by the molar mass of 30 grams to find the number of molecules in your sample. The answer should be .75 molecules. Hope this helps!
The mole fraction of methanol in the mixture is 0.444
We'll begin by calculating the number of mole of water.
- Molar mass of water = 18 g/mol
Mole = mass / molar mass
Mole of water = 45 / 18
Mole of water = 2.5 moles
Finally, we shall determine the mole fraction of methanol.
- Mole of water = 2.5 moles
- Mole of methanol = 2 moles
- Total mole = 2 + 2.5 = 4.5 moles
Mole fraction of methanol =?
Mole fraction = mole / total mole
Mole fraction of methanol = 2 / 4.5
Mole fraction of methanol = 0.444
Thus, the mole fraction of methanol is 0.444
Learn more about mole fraction:
brainly.com/question/15444997
The balanced reaction is as follows;
BiCl₂ + Na₂SO₄ --> 2NaCl + BiSO₄
this is a double displacement reaction
the oxidation number of Bi is +2 in both BiCl₂ and BiSO₄
oxidation number of Cl is -1 in both BiCl₂ and NaCl
oxidation number of Na is +1 in both Na₂SO₄ and NaCl
oxidation numbers of elements in SO₄²⁻ remains the same in both compounds.Therefore the oxidation state in any of the elements in the reaction doesn't change. Neither of the elements show an increase or decrease in the oxidation numbers .
Answer for this question is no element decreases its oxidation number.