Answer:
Chemical energy, Energy stored in the bonds of chemical compounds. Chemical energy may be released during a chemical reaction, often in the form of heat; such reactions are called exothermic.
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
0
Explanation:
The overall charge on this atom is 0.
To find the charge on an atom;
charge = number of protons - number of electrons.
Note:
- Protons are the positively charged particles in an atom
- Electrons are the negatively charged particles in an atom
- Neutrons carries no charges on them.
Since the atom is made up of equal number of protons and electrons, the charge on it is 0.
If the number of electrons is more, the atom will be negatively charge but if the number of protons is more, it will be positively charged.
The heat and energy of coal burning is more easier and more efficient to turn into electricity than any method using renewable resources.